Metamath Proof Explorer


Theorem r19.43

Description: Restricted quantifier version of 19.43 . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion r19.43 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.35 ( ∃ 𝑥𝐴 ( ¬ 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 ¬ 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
2 df-or ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )
3 2 rexbii ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∃ 𝑥𝐴 ( ¬ 𝜑𝜓 ) )
4 df-or ( ( ∃ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) ↔ ( ¬ ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
5 ralnex ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑥𝐴 𝜑 )
6 5 imbi1i ( ( ∀ 𝑥𝐴 ¬ 𝜑 → ∃ 𝑥𝐴 𝜓 ) ↔ ( ¬ ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
7 4 6 bitr4i ( ( ∃ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) ↔ ( ∀ 𝑥𝐴 ¬ 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
8 1 3 7 3bitr4i ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) )