Metamath Proof Explorer


Theorem ssxpb

Description: A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008)

Ref Expression
Assertion ssxpb A×BA×BC×DACBD

Proof

Step Hyp Ref Expression
1 xpnz ABA×B
2 dmxp BdomA×B=A
3 2 adantl ABdomA×B=A
4 1 3 sylbir A×BdomA×B=A
5 4 adantr A×BA×BC×DdomA×B=A
6 dmss A×BC×DdomA×BdomC×D
7 6 adantl A×BA×BC×DdomA×BdomC×D
8 5 7 eqsstrrd A×BA×BC×DAdomC×D
9 dmxpss domC×DC
10 8 9 sstrdi A×BA×BC×DAC
11 rnxp AranA×B=B
12 11 adantr ABranA×B=B
13 1 12 sylbir A×BranA×B=B
14 13 adantr A×BA×BC×DranA×B=B
15 rnss A×BC×DranA×BranC×D
16 15 adantl A×BA×BC×DranA×BranC×D
17 14 16 eqsstrrd A×BA×BC×DBranC×D
18 rnxpss ranC×DD
19 17 18 sstrdi A×BA×BC×DBD
20 10 19 jca A×BA×BC×DACBD
21 20 ex A×BA×BC×DACBD
22 xpss12 ACBDA×BC×D
23 21 22 impbid1 A×BA×BC×DACBD