Metamath Proof Explorer


Theorem ssxpb

Description: A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008)

Ref Expression
Assertion ssxpb A × B A × B C × D A C B D

Proof

Step Hyp Ref Expression
1 xpnz A B A × B
2 dmxp B dom A × B = A
3 2 adantl A B dom A × B = A
4 1 3 sylbir A × B dom A × B = A
5 4 adantr A × B A × B C × D dom A × B = A
6 dmss A × B C × D dom A × B dom C × D
7 6 adantl A × B A × B C × D dom A × B dom C × D
8 5 7 eqsstrrd A × B A × B C × D A dom C × D
9 dmxpss dom C × D C
10 8 9 sstrdi A × B A × B C × D A C
11 rnxp A ran A × B = B
12 11 adantr A B ran A × B = B
13 1 12 sylbir A × B ran A × B = B
14 13 adantr A × B A × B C × D ran A × B = B
15 rnss A × B C × D ran A × B ran C × D
16 15 adantl A × B A × B C × D ran A × B ran C × D
17 14 16 eqsstrrd A × B A × B C × D B ran C × D
18 rnxpss ran C × D D
19 17 18 sstrdi A × B A × B C × D B D
20 10 19 jca A × B A × B C × D A C B D
21 20 ex A × B A × B C × D A C B D
22 xpss12 A C B D A × B C × D
23 21 22 impbid1 A × B A × B C × D A C B D