Metamath Proof Explorer


Theorem rspcsbnea

Description: Special case related to rspsbc . (Contributed by metakunt, 5-May-2025)

Ref Expression
Assertion rspcsbnea A B x B C D A / x C D

Proof

Step Hyp Ref Expression
1 rspsbc A B x B C D [˙A / x]˙ C D
2 df-ne C D ¬ C = D
3 2 sbcbii [˙A / x]˙ C D [˙A / x]˙ ¬ C = D
4 3 a1i A B [˙A / x]˙ C D [˙A / x]˙ ¬ C = D
5 sbcng A B [˙A / x]˙ ¬ C = D ¬ [˙A / x]˙ C = D
6 sbceq1g A B [˙A / x]˙ C = D A / x C = D
7 6 notbid A B ¬ [˙A / x]˙ C = D ¬ A / x C = D
8 5 7 bitrd A B [˙A / x]˙ ¬ C = D ¬ A / x C = D
9 4 8 bitrd A B [˙A / x]˙ C D ¬ A / x C = D
10 biidd A B A / x C = D A / x C = D
11 10 necon3bbid A B ¬ A / x C = D A / x C D
12 9 11 bitrd A B [˙A / x]˙ C D A / x C D
13 1 12 sylibd A B x B C D A / x C D
14 13 imp A B x B C D A / x C D