Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Miscellaneous results for AKS formalisation
rspcsbnea
Next ⟩
idomnnzpownz
Metamath Proof Explorer
Ascii
Unicode
Theorem
rspcsbnea
Description:
Special case related to
rspsbc
.
(Contributed by
metakunt
, 5-May-2025)
Ref
Expression
Assertion
rspcsbnea
⊢
A
∈
B
∧
∀
x
∈
B
C
≠
D
→
⦋
A
/
x
⦌
C
≠
D
Proof
Step
Hyp
Ref
Expression
1
rspsbc
⊢
A
∈
B
→
∀
x
∈
B
C
≠
D
→
[
˙
A
/
x
]
˙
C
≠
D
2
df-ne
⊢
C
≠
D
↔
¬
C
=
D
3
2
sbcbii
⊢
[
˙
A
/
x
]
˙
C
≠
D
↔
[
˙
A
/
x
]
˙
¬
C
=
D
4
3
a1i
⊢
A
∈
B
→
[
˙
A
/
x
]
˙
C
≠
D
↔
[
˙
A
/
x
]
˙
¬
C
=
D
5
sbcng
⊢
A
∈
B
→
[
˙
A
/
x
]
˙
¬
C
=
D
↔
¬
[
˙
A
/
x
]
˙
C
=
D
6
sbceq1g
⊢
A
∈
B
→
[
˙
A
/
x
]
˙
C
=
D
↔
⦋
A
/
x
⦌
C
=
D
7
6
notbid
⊢
A
∈
B
→
¬
[
˙
A
/
x
]
˙
C
=
D
↔
¬
⦋
A
/
x
⦌
C
=
D
8
5
7
bitrd
⊢
A
∈
B
→
[
˙
A
/
x
]
˙
¬
C
=
D
↔
¬
⦋
A
/
x
⦌
C
=
D
9
4
8
bitrd
⊢
A
∈
B
→
[
˙
A
/
x
]
˙
C
≠
D
↔
¬
⦋
A
/
x
⦌
C
=
D
10
biidd
⊢
A
∈
B
→
⦋
A
/
x
⦌
C
=
D
↔
⦋
A
/
x
⦌
C
=
D
11
10
necon3bbid
⊢
A
∈
B
→
¬
⦋
A
/
x
⦌
C
=
D
↔
⦋
A
/
x
⦌
C
≠
D
12
9
11
bitrd
⊢
A
∈
B
→
[
˙
A
/
x
]
˙
C
≠
D
↔
⦋
A
/
x
⦌
C
≠
D
13
1
12
sylibd
⊢
A
∈
B
→
∀
x
∈
B
C
≠
D
→
⦋
A
/
x
⦌
C
≠
D
14
13
imp
⊢
A
∈
B
∧
∀
x
∈
B
C
≠
D
→
⦋
A
/
x
⦌
C
≠
D