Metamath Proof Explorer


Theorem rspcsbnea

Description: Special case related to rspsbc . (Contributed by metakunt, 5-May-2025)

Ref Expression
Assertion rspcsbnea ( ( 𝐴𝐵 ∧ ∀ 𝑥𝐵 𝐶𝐷 ) → 𝐴 / 𝑥 𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 rspsbc ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝐶𝐷[ 𝐴 / 𝑥 ] 𝐶𝐷 ) )
2 df-ne ( 𝐶𝐷 ↔ ¬ 𝐶 = 𝐷 )
3 2 sbcbii ( [ 𝐴 / 𝑥 ] 𝐶𝐷[ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 )
4 3 a1i ( 𝐴𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶𝐷[ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ) )
5 sbcng ( 𝐴𝐵 → ( [ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ↔ ¬ [ 𝐴 / 𝑥 ] 𝐶 = 𝐷 ) )
6 sbceq1g ( 𝐴𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝐷 𝐴 / 𝑥 𝐶 = 𝐷 ) )
7 6 notbid ( 𝐴𝐵 → ( ¬ [ 𝐴 / 𝑥 ] 𝐶 = 𝐷 ↔ ¬ 𝐴 / 𝑥 𝐶 = 𝐷 ) )
8 5 7 bitrd ( 𝐴𝐵 → ( [ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ↔ ¬ 𝐴 / 𝑥 𝐶 = 𝐷 ) )
9 4 8 bitrd ( 𝐴𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶𝐷 ↔ ¬ 𝐴 / 𝑥 𝐶 = 𝐷 ) )
10 biidd ( 𝐴𝐵 → ( 𝐴 / 𝑥 𝐶 = 𝐷 𝐴 / 𝑥 𝐶 = 𝐷 ) )
11 10 necon3bbid ( 𝐴𝐵 → ( ¬ 𝐴 / 𝑥 𝐶 = 𝐷 𝐴 / 𝑥 𝐶𝐷 ) )
12 9 11 bitrd ( 𝐴𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶𝐷 𝐴 / 𝑥 𝐶𝐷 ) )
13 1 12 sylibd ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝐶𝐷 𝐴 / 𝑥 𝐶𝐷 ) )
14 13 imp ( ( 𝐴𝐵 ∧ ∀ 𝑥𝐵 𝐶𝐷 ) → 𝐴 / 𝑥 𝐶𝐷 )