| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspsbc | ⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 𝐶  ≠  𝐷  →  [ 𝐴  /  𝑥 ] 𝐶  ≠  𝐷 ) ) | 
						
							| 2 |  | df-ne | ⊢ ( 𝐶  ≠  𝐷  ↔  ¬  𝐶  =  𝐷 ) | 
						
							| 3 | 2 | sbcbii | ⊢ ( [ 𝐴  /  𝑥 ] 𝐶  ≠  𝐷  ↔  [ 𝐴  /  𝑥 ] ¬  𝐶  =  𝐷 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝐶  ≠  𝐷  ↔  [ 𝐴  /  𝑥 ] ¬  𝐶  =  𝐷 ) ) | 
						
							| 5 |  | sbcng | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] ¬  𝐶  =  𝐷  ↔  ¬  [ 𝐴  /  𝑥 ] 𝐶  =  𝐷 ) ) | 
						
							| 6 |  | sbceq1g | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝐶  =  𝐷  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  𝐷 ) ) | 
						
							| 7 | 6 | notbid | ⊢ ( 𝐴  ∈  𝐵  →  ( ¬  [ 𝐴  /  𝑥 ] 𝐶  =  𝐷  ↔  ¬  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  𝐷 ) ) | 
						
							| 8 | 5 7 | bitrd | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] ¬  𝐶  =  𝐷  ↔  ¬  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  𝐷 ) ) | 
						
							| 9 | 4 8 | bitrd | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝐶  ≠  𝐷  ↔  ¬  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  𝐷 ) ) | 
						
							| 10 |  | biidd | ⊢ ( 𝐴  ∈  𝐵  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  𝐷  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  𝐷 ) ) | 
						
							| 11 | 10 | necon3bbid | ⊢ ( 𝐴  ∈  𝐵  →  ( ¬  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  𝐷  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ≠  𝐷 ) ) | 
						
							| 12 | 9 11 | bitrd | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝐶  ≠  𝐷  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ≠  𝐷 ) ) | 
						
							| 13 | 1 12 | sylibd | ⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 𝐶  ≠  𝐷  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ≠  𝐷 ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( 𝐴  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 𝐶  ≠  𝐷 )  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ≠  𝐷 ) |