| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspsbc |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝐶 ≠ 𝐷 → [ 𝐴 / 𝑥 ] 𝐶 ≠ 𝐷 ) ) |
| 2 |
|
df-ne |
⊢ ( 𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷 ) |
| 3 |
2
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝐶 ≠ 𝐷 ↔ [ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ) |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 ≠ 𝐷 ↔ [ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ) ) |
| 5 |
|
sbcng |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ↔ ¬ [ 𝐴 / 𝑥 ] 𝐶 = 𝐷 ) ) |
| 6 |
|
sbceq1g |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) ) |
| 7 |
6
|
notbid |
⊢ ( 𝐴 ∈ 𝐵 → ( ¬ [ 𝐴 / 𝑥 ] 𝐶 = 𝐷 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) ) |
| 8 |
5 7
|
bitrd |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) ) |
| 9 |
4 8
|
bitrd |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 ≠ 𝐷 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) ) |
| 10 |
|
biidd |
⊢ ( 𝐴 ∈ 𝐵 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) ) |
| 11 |
10
|
necon3bbid |
⊢ ( 𝐴 ∈ 𝐵 → ( ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ≠ 𝐷 ) ) |
| 12 |
9 11
|
bitrd |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 ≠ 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ≠ 𝐷 ) ) |
| 13 |
1 12
|
sylibd |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝐶 ≠ 𝐷 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ≠ 𝐷 ) ) |
| 14 |
13
|
imp |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 𝐶 ≠ 𝐷 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ≠ 𝐷 ) |