Step |
Hyp |
Ref |
Expression |
1 |
|
rspsbc |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝐶 ≠ 𝐷 → [ 𝐴 / 𝑥 ] 𝐶 ≠ 𝐷 ) ) |
2 |
|
df-ne |
⊢ ( 𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷 ) |
3 |
2
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝐶 ≠ 𝐷 ↔ [ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ) |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 ≠ 𝐷 ↔ [ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ) ) |
5 |
|
sbcng |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ↔ ¬ [ 𝐴 / 𝑥 ] 𝐶 = 𝐷 ) ) |
6 |
|
sbceq1g |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) ) |
7 |
6
|
notbid |
⊢ ( 𝐴 ∈ 𝐵 → ( ¬ [ 𝐴 / 𝑥 ] 𝐶 = 𝐷 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) ) |
8 |
5 7
|
bitrd |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ¬ 𝐶 = 𝐷 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) ) |
9 |
4 8
|
bitrd |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 ≠ 𝐷 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) ) |
10 |
|
biidd |
⊢ ( 𝐴 ∈ 𝐵 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) ) |
11 |
10
|
necon3bbid |
⊢ ( 𝐴 ∈ 𝐵 → ( ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ≠ 𝐷 ) ) |
12 |
9 11
|
bitrd |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 ≠ 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ≠ 𝐷 ) ) |
13 |
1 12
|
sylibd |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝐶 ≠ 𝐷 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ≠ 𝐷 ) ) |
14 |
13
|
imp |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 𝐶 ≠ 𝐷 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ≠ 𝐷 ) |