| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idomnnzpownz.1 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 2 |
|
idomnnzpownz.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 3 |
|
idomnnzpownz.3 |
⊢ ( 𝜑 → 𝐴 ≠ ( 0g ‘ 𝑅 ) ) |
| 4 |
|
idomnnzpownz.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
idomnnzpownz.5 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 6 |
4
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 𝐴 ) = ( 0 ↑ 𝐴 ) ) |
| 8 |
7
|
neeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ↔ ( 0 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝐴 ) = ( 𝑦 ↑ 𝐴 ) ) |
| 10 |
9
|
neeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ↔ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ 𝐴 ) = ( ( 𝑦 + 1 ) ↑ 𝐴 ) ) |
| 12 |
11
|
neeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ↔ ( ( 𝑦 + 1 ) ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ 𝐴 ) = ( 𝑁 ↑ 𝐴 ) ) |
| 14 |
13
|
neeq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ↔ ( 𝑁 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 15 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 17 |
15 16
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 18 |
2 17
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 20 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 21 |
19 20 5
|
mulg0 |
⊢ ( 𝐴 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) → ( 0 ↑ 𝐴 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 22 |
18 21
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝐴 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 23 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 24 |
15 23
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 25 |
22 24
|
eqtr4di |
⊢ ( 𝜑 → ( 0 ↑ 𝐴 ) = ( 1r ‘ 𝑅 ) ) |
| 26 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
| 27 |
26
|
simprbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ Domn ) |
| 28 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
| 29 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 30 |
23 29
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 31 |
1 27 28 30
|
4syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 32 |
25 31
|
eqnetrd |
⊢ ( 𝜑 → ( 0 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 33 |
1
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 34 |
15
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 38 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑦 ∈ ℕ0 ) |
| 39 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝐴 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 40 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 41 |
19 5 40
|
mulgnn0p1 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝐴 ) ) |
| 42 |
37 38 39 41
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝐴 ) ) |
| 43 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 44 |
15 43
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 45 |
44
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 46 |
45
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = ( .r ‘ 𝑅 ) ) |
| 47 |
46
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 ↑ 𝐴 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) ) |
| 48 |
1 27
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ Domn ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Domn ) |
| 51 |
19 5
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 52 |
37 38 39 51
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 53 |
17
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ 𝑅 ) |
| 54 |
53
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ 𝑅 ) ) |
| 55 |
52 54
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) |
| 56 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 57 |
55 56
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 58 |
2 3
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ 𝐴 ≠ ( 0g ‘ 𝑅 ) ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ 𝐴 ≠ ( 0g ‘ 𝑅 ) ) ) |
| 60 |
59
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ 𝐴 ≠ ( 0g ‘ 𝑅 ) ) ) |
| 61 |
16 43 29
|
domnmuln0 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ 𝐴 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 62 |
50 57 60 61
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 63 |
47 62
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 ↑ 𝐴 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 64 |
42 63
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 65 |
8 10 12 14 32 64
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 66 |
6 65
|
syl |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) |