Step |
Hyp |
Ref |
Expression |
1 |
|
idomnnzgmulnz.1 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
2 |
|
idomnnzgmulnz.2 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
3 |
|
idomnnzgmulnz.3 |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
4 |
|
idomnnzgmulnz.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
5 |
|
idomnnzgmulnz.5 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → 𝐴 ≠ ( 0g ‘ 𝑅 ) ) |
6 |
|
mpteq1 |
⊢ ( 𝑥 = ∅ → ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) = ( 𝑛 ∈ ∅ ↦ 𝐴 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑛 ∈ ∅ ↦ 𝐴 ) ) ) |
8 |
7
|
neeq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐺 Σg ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ↔ ( 𝐺 Σg ( 𝑛 ∈ ∅ ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ) |
9 |
|
mpteq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) = ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ) |
11 |
10
|
neeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 Σg ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ↔ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ) |
12 |
|
mpteq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) = ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ 𝐴 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐺 Σg ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ 𝐴 ) ) ) |
14 |
13
|
neeq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐺 Σg ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ↔ ( 𝐺 Σg ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ) |
15 |
|
mpteq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) = ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐺 Σg ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) ) |
17 |
16
|
neeq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐺 Σg ( 𝑛 ∈ 𝑥 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ↔ ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ) |
18 |
|
mpt0 |
⊢ ( 𝑛 ∈ ∅ ↦ 𝐴 ) = ∅ |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ∅ ↦ 𝐴 ) = ∅ ) |
20 |
19
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ ∅ ↦ 𝐴 ) ) = ( 𝐺 Σg ∅ ) ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
22 |
21
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
23 |
22
|
a1i |
⊢ ( 𝜑 → ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) ) |
24 |
20 23
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ ∅ ↦ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
25 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
26 |
1 25
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝐺 ) |
27 |
26
|
eqcomi |
⊢ ( 0g ‘ 𝐺 ) = ( 1r ‘ 𝑅 ) |
28 |
27
|
a1i |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = ( 1r ‘ 𝑅 ) ) |
29 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
30 |
29
|
simprbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ Domn ) |
31 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
32 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
33 |
25 32
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
34 |
2 30 31 33
|
4syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
35 |
28 34
|
eqnetrd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ≠ ( 0g ‘ 𝑅 ) ) |
36 |
24 35
|
eqnetrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ ∅ ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐴 |
38 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
39 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
40 |
37 38 39
|
cbvmpt |
⊢ ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ 𝐴 ) = ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
41 |
40
|
oveq2i |
⊢ ( 𝐺 Σg ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
42 |
41
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐺 Σg ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
44 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
45 |
29
|
simplbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ CRing ) |
46 |
2 45
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
47 |
1
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd ) |
48 |
46 47
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) → 𝐺 ∈ CMnd ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → 𝐺 ∈ CMnd ) |
51 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) → 𝑁 ∈ Fin ) |
52 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) → 𝑦 ⊆ 𝑁 ) |
53 |
51 52
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑦 ∈ Fin ) |
55 |
52
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑦 ⊆ 𝑁 ) |
56 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑚 ∈ 𝑦 ) |
57 |
55 56
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑚 ∈ 𝑁 ) |
58 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑁 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
59 |
58
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑚 ∈ 𝑦 ) → ∀ 𝑛 ∈ 𝑁 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
60 |
|
rspcsbela |
⊢ ( ( 𝑚 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 𝐴 ∈ ( Base ‘ 𝑅 ) ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
61 |
57 59 60
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑚 ∈ 𝑦 ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
62 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
63 |
1 62
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐺 ) |
64 |
63
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑚 ∈ 𝑦 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐺 ) ) |
65 |
61 64
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝑚 ∈ 𝑦 ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
66 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) → 𝑧 ∈ 𝑁 ) |
67 |
66
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) → 𝑧 ∈ 𝑁 ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) → 𝑧 ∈ 𝑁 ) |
69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑧 ∈ 𝑁 ) |
70 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) → ¬ 𝑧 ∈ 𝑦 ) |
71 |
70
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
74 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ∀ 𝑛 ∈ 𝑁 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
75 |
|
rspcsbela |
⊢ ( ( 𝑧 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 𝐴 ∈ ( Base ‘ 𝑅 ) ) → ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
76 |
69 74 75
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
77 |
63
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐺 ) ) |
78 |
76 77
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
79 |
|
csbeq1 |
⊢ ( 𝑚 = 𝑧 → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 = ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ) |
80 |
43 44 50 54 65 69 73 78 79
|
gsumunsn |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐺 Σg ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) = ( ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ( +g ‘ 𝐺 ) ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ) ) |
81 |
42 80
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐺 Σg ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ 𝐴 ) ) = ( ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ( +g ‘ 𝐺 ) ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ) ) |
82 |
2 30
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) → 𝑅 ∈ Domn ) |
84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Domn ) |
85 |
61
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ∀ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
86 |
63 50 54 85
|
gsummptcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ) |
87 |
39
|
equcoms |
⊢ ( 𝑚 = 𝑛 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
88 |
87
|
eqcomd |
⊢ ( 𝑚 = 𝑛 → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 = 𝐴 ) |
89 |
38 37 88
|
cbvmpt |
⊢ ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) |
90 |
89
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) |
91 |
90
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) = ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ) |
92 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
93 |
91 92
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
94 |
86 93
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ) |
95 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑁 𝐴 ≠ ( 0g ‘ 𝑅 ) ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) → ∀ 𝑛 ∈ 𝑁 𝐴 ≠ ( 0g ‘ 𝑅 ) ) |
97 |
|
rspcsbnea |
⊢ ( ( 𝑧 ∈ 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 𝐴 ≠ ( 0g ‘ 𝑅 ) ) → ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ≠ ( 0g ‘ 𝑅 ) ) |
98 |
68 96 97
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ≠ ( 0g ‘ 𝑅 ) ) |
99 |
98
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ≠ ( 0g ‘ 𝑅 ) ) |
100 |
76 99
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ≠ ( 0g ‘ 𝑅 ) ) ) |
101 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
102 |
1 101
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) |
103 |
102
|
eqcomi |
⊢ ( +g ‘ 𝐺 ) = ( .r ‘ 𝑅 ) |
104 |
62 103 32
|
domnmuln0 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ∧ ( ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ( +g ‘ 𝐺 ) ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) |
105 |
84 94 100 104
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐺 Σg ( 𝑚 ∈ 𝑦 ↦ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ( +g ‘ 𝐺 ) ⦋ 𝑧 / 𝑛 ⦌ 𝐴 ) ≠ ( 0g ‘ 𝑅 ) ) |
106 |
81 105
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐺 Σg ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
107 |
106
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑁 ∧ 𝑧 ∈ ( 𝑁 ∖ 𝑦 ) ) ) → ( ( 𝐺 Σg ( 𝑛 ∈ 𝑦 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) → ( 𝐺 Σg ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) ) |
108 |
8 11 14 17 36 107 3
|
findcard2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) ≠ ( 0g ‘ 𝑅 ) ) |