| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringexp0nn.1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 2 |
|
ringexp0nn.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
|
ringexp0nn.3 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 4 |
2
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝑁 ∈ ℕ ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 1 ↑ ( 0g ‘ 𝑅 ) ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 1 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( ( 𝑦 + 1 ) ↑ ( 0g ‘ 𝑅 ) ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 𝑦 + 1 ) ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 𝑁 ↑ ( 0g ‘ 𝑅 ) ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑁 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 13 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 17 |
15 16
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 18 |
14 17
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 19 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 20 |
19 15
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 22 |
18 21
|
eleqtrd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 24 |
23 3
|
mulg1 |
⊢ ( ( 0g ‘ 𝑅 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) → ( 1 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 25 |
22 24
|
syl |
⊢ ( 𝜑 → ( 1 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 26 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → 𝑦 ∈ ℕ ) |
| 27 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 28 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 29 |
23 3 28
|
mulgnnp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( ( 𝑦 + 1 ) ↑ ( 0g ‘ 𝑅 ) ) = ( ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) ) |
| 30 |
26 27 29
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 + 1 ) ↑ ( 0g ‘ 𝑅 ) ) = ( ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) ) |
| 33 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 34 |
19 33
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 35 |
34
|
eqcomi |
⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = ( .r ‘ 𝑅 ) |
| 36 |
15 35 16
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 37 |
1 18 36
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 40 |
32 39
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 41 |
30 40
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 + 1 ) ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 42 |
6 8 10 12 25 41
|
nnindd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 43 |
4 42
|
syl |
⊢ ( 𝜑 → ( 𝑁 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |