Step |
Hyp |
Ref |
Expression |
1 |
|
ringexp0nn.1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
2 |
|
ringexp0nn.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
ringexp0nn.3 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
4 |
2
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝑁 ∈ ℕ ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 1 ↑ ( 0g ‘ 𝑅 ) ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 1 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( ( 𝑦 + 1 ) ↑ ( 0g ‘ 𝑅 ) ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 𝑦 + 1 ) ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 𝑁 ↑ ( 0g ‘ 𝑅 ) ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑁 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
13 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
17 |
15 16
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
18 |
14 17
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
19 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
20 |
19 15
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
21 |
20
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
22 |
18 21
|
eleqtrd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
23 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
24 |
23 3
|
mulg1 |
⊢ ( ( 0g ‘ 𝑅 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) → ( 1 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
25 |
22 24
|
syl |
⊢ ( 𝜑 → ( 1 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
26 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → 𝑦 ∈ ℕ ) |
27 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
28 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
29 |
23 3 28
|
mulgnnp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( ( 𝑦 + 1 ) ↑ ( 0g ‘ 𝑅 ) ) = ( ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) ) |
30 |
26 27 29
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 + 1 ) ↑ ( 0g ‘ 𝑅 ) ) = ( ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) ) |
31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
32 |
31
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) ) |
33 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
34 |
19 33
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
35 |
34
|
eqcomi |
⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = ( .r ‘ 𝑅 ) |
36 |
15 35 16
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
37 |
1 18 36
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
40 |
32 39
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
41 |
30 40
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑦 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑦 + 1 ) ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
42 |
6 8 10 12 25 41
|
nnindd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
43 |
4 42
|
syl |
⊢ ( 𝜑 → ( 𝑁 ↑ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |