| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringexp0nn.1 | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 2 |  | ringexp0nn.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | ringexp0nn.3 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 4 | 2 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝑁  ∈  ℕ ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥  ↑  ( 0g ‘ 𝑅 ) )  =  ( 1  ↑  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑥  =  1  →  ( ( 𝑥  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 )  ↔  ( 1  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ↑  ( 0g ‘ 𝑅 ) )  =  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 )  ↔  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥  ↑  ( 0g ‘ 𝑅 ) )  =  ( ( 𝑦  +  1 )  ↑  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝑥  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 )  ↔  ( ( 𝑦  +  1 )  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑥  ↑  ( 0g ‘ 𝑅 ) )  =  ( 𝑁  ↑  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑥  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 )  ↔  ( 𝑁  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 13 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Mnd ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 17 | 15 16 | mndidcl | ⊢ ( 𝑅  ∈  Mnd  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 14 17 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 19 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 20 | 19 15 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 22 | 18 21 | eleqtrd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 24 | 23 3 | mulg1 | ⊢ ( ( 0g ‘ 𝑅 )  ∈  ( Base ‘ ( mulGrp ‘ 𝑅 ) )  →  ( 1  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 25 | 22 24 | syl | ⊢ ( 𝜑  →  ( 1  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 26 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  →  𝑦  ∈  ℕ ) | 
						
							| 27 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 29 | 23 3 28 | mulgnnp1 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) )  →  ( ( 𝑦  +  1 )  ↑  ( 0g ‘ 𝑅 ) )  =  ( ( 𝑦  ↑  ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) ) | 
						
							| 30 | 26 27 29 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑦  +  1 )  ↑  ( 0g ‘ 𝑅 ) )  =  ( ( 𝑦  ↑  ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑦  ↑  ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) )  =  ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 34 | 19 33 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 35 | 34 | eqcomi | ⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( .r ‘ 𝑅 ) | 
						
							| 36 | 15 35 16 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 37 | 1 18 36 | syl2anc | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 0g ‘ 𝑅 ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 40 | 32 39 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑦  ↑  ( 0g ‘ 𝑅 ) ) ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 41 | 30 40 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( 𝑦  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑦  +  1 )  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 42 | 6 8 10 12 25 41 | nnindd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 43 | 4 42 | syl | ⊢ ( 𝜑  →  ( 𝑁  ↑  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) |