Step |
Hyp |
Ref |
Expression |
1 |
|
ringexp0nn.1 |
|
2 |
|
ringexp0nn.2 |
|
3 |
|
ringexp0nn.3 |
|
4 |
2
|
ancli |
|
5 |
|
oveq1 |
|
6 |
5
|
eqeq1d |
|
7 |
|
oveq1 |
|
8 |
7
|
eqeq1d |
|
9 |
|
oveq1 |
|
10 |
9
|
eqeq1d |
|
11 |
|
oveq1 |
|
12 |
11
|
eqeq1d |
|
13 |
|
ringmnd |
|
14 |
1 13
|
syl |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
15 16
|
mndidcl |
|
18 |
14 17
|
syl |
|
19 |
|
eqid |
|
20 |
19 15
|
mgpbas |
|
21 |
20
|
a1i |
|
22 |
18 21
|
eleqtrd |
|
23 |
|
eqid |
|
24 |
23 3
|
mulg1 |
|
25 |
22 24
|
syl |
|
26 |
|
simplr |
|
27 |
22
|
ad2antrr |
|
28 |
|
eqid |
|
29 |
23 3 28
|
mulgnnp1 |
|
30 |
26 27 29
|
syl2anc |
|
31 |
|
simpr |
|
32 |
31
|
oveq1d |
|
33 |
|
eqid |
|
34 |
19 33
|
mgpplusg |
|
35 |
34
|
eqcomi |
|
36 |
15 35 16
|
ringrz |
|
37 |
1 18 36
|
syl2anc |
|
38 |
37
|
adantr |
|
39 |
38
|
adantr |
|
40 |
32 39
|
eqtrd |
|
41 |
30 40
|
eqtrd |
|
42 |
6 8 10 12 25 41
|
nnindd |
|
43 |
4 42
|
syl |
|