Metamath Proof Explorer


Theorem ringexp0nn

Description: Zero to the power of a positive integer is zero. (Contributed by metakunt, 5-May-2025)

Ref Expression
Hypotheses ringexp0nn.1 φ R Ring
ringexp0nn.2 φ N
ringexp0nn.3 × ˙ = mulGrp R
Assertion ringexp0nn φ N × ˙ 0 R = 0 R

Proof

Step Hyp Ref Expression
1 ringexp0nn.1 φ R Ring
2 ringexp0nn.2 φ N
3 ringexp0nn.3 × ˙ = mulGrp R
4 2 ancli φ φ N
5 oveq1 x = 1 x × ˙ 0 R = 1 × ˙ 0 R
6 5 eqeq1d x = 1 x × ˙ 0 R = 0 R 1 × ˙ 0 R = 0 R
7 oveq1 x = y x × ˙ 0 R = y × ˙ 0 R
8 7 eqeq1d x = y x × ˙ 0 R = 0 R y × ˙ 0 R = 0 R
9 oveq1 x = y + 1 x × ˙ 0 R = y + 1 × ˙ 0 R
10 9 eqeq1d x = y + 1 x × ˙ 0 R = 0 R y + 1 × ˙ 0 R = 0 R
11 oveq1 x = N x × ˙ 0 R = N × ˙ 0 R
12 11 eqeq1d x = N x × ˙ 0 R = 0 R N × ˙ 0 R = 0 R
13 ringmnd R Ring R Mnd
14 1 13 syl φ R Mnd
15 eqid Base R = Base R
16 eqid 0 R = 0 R
17 15 16 mndidcl R Mnd 0 R Base R
18 14 17 syl φ 0 R Base R
19 eqid mulGrp R = mulGrp R
20 19 15 mgpbas Base R = Base mulGrp R
21 20 a1i φ Base R = Base mulGrp R
22 18 21 eleqtrd φ 0 R Base mulGrp R
23 eqid Base mulGrp R = Base mulGrp R
24 23 3 mulg1 0 R Base mulGrp R 1 × ˙ 0 R = 0 R
25 22 24 syl φ 1 × ˙ 0 R = 0 R
26 simplr φ y y × ˙ 0 R = 0 R y
27 22 ad2antrr φ y y × ˙ 0 R = 0 R 0 R Base mulGrp R
28 eqid + mulGrp R = + mulGrp R
29 23 3 28 mulgnnp1 y 0 R Base mulGrp R y + 1 × ˙ 0 R = y × ˙ 0 R + mulGrp R 0 R
30 26 27 29 syl2anc φ y y × ˙ 0 R = 0 R y + 1 × ˙ 0 R = y × ˙ 0 R + mulGrp R 0 R
31 simpr φ y y × ˙ 0 R = 0 R y × ˙ 0 R = 0 R
32 31 oveq1d φ y y × ˙ 0 R = 0 R y × ˙ 0 R + mulGrp R 0 R = 0 R + mulGrp R 0 R
33 eqid R = R
34 19 33 mgpplusg R = + mulGrp R
35 34 eqcomi + mulGrp R = R
36 15 35 16 ringrz R Ring 0 R Base R 0 R + mulGrp R 0 R = 0 R
37 1 18 36 syl2anc φ 0 R + mulGrp R 0 R = 0 R
38 37 adantr φ y 0 R + mulGrp R 0 R = 0 R
39 38 adantr φ y y × ˙ 0 R = 0 R 0 R + mulGrp R 0 R = 0 R
40 32 39 eqtrd φ y y × ˙ 0 R = 0 R y × ˙ 0 R + mulGrp R 0 R = 0 R
41 30 40 eqtrd φ y y × ˙ 0 R = 0 R y + 1 × ˙ 0 R = 0 R
42 6 8 10 12 25 41 nnindd φ N N × ˙ 0 R = 0 R
43 4 42 syl φ N × ˙ 0 R = 0 R