Step |
Hyp |
Ref |
Expression |
1 |
|
ringexp0nn.1 |
|- ( ph -> R e. Ring ) |
2 |
|
ringexp0nn.2 |
|- ( ph -> N e. NN ) |
3 |
|
ringexp0nn.3 |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
4 |
2
|
ancli |
|- ( ph -> ( ph /\ N e. NN ) ) |
5 |
|
oveq1 |
|- ( x = 1 -> ( x .^ ( 0g ` R ) ) = ( 1 .^ ( 0g ` R ) ) ) |
6 |
5
|
eqeq1d |
|- ( x = 1 -> ( ( x .^ ( 0g ` R ) ) = ( 0g ` R ) <-> ( 1 .^ ( 0g ` R ) ) = ( 0g ` R ) ) ) |
7 |
|
oveq1 |
|- ( x = y -> ( x .^ ( 0g ` R ) ) = ( y .^ ( 0g ` R ) ) ) |
8 |
7
|
eqeq1d |
|- ( x = y -> ( ( x .^ ( 0g ` R ) ) = ( 0g ` R ) <-> ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) ) |
9 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x .^ ( 0g ` R ) ) = ( ( y + 1 ) .^ ( 0g ` R ) ) ) |
10 |
9
|
eqeq1d |
|- ( x = ( y + 1 ) -> ( ( x .^ ( 0g ` R ) ) = ( 0g ` R ) <-> ( ( y + 1 ) .^ ( 0g ` R ) ) = ( 0g ` R ) ) ) |
11 |
|
oveq1 |
|- ( x = N -> ( x .^ ( 0g ` R ) ) = ( N .^ ( 0g ` R ) ) ) |
12 |
11
|
eqeq1d |
|- ( x = N -> ( ( x .^ ( 0g ` R ) ) = ( 0g ` R ) <-> ( N .^ ( 0g ` R ) ) = ( 0g ` R ) ) ) |
13 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
14 |
1 13
|
syl |
|- ( ph -> R e. Mnd ) |
15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
17 |
15 16
|
mndidcl |
|- ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) |
18 |
14 17
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
19 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
20 |
19 15
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
21 |
20
|
a1i |
|- ( ph -> ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) ) |
22 |
18 21
|
eleqtrd |
|- ( ph -> ( 0g ` R ) e. ( Base ` ( mulGrp ` R ) ) ) |
23 |
|
eqid |
|- ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) |
24 |
23 3
|
mulg1 |
|- ( ( 0g ` R ) e. ( Base ` ( mulGrp ` R ) ) -> ( 1 .^ ( 0g ` R ) ) = ( 0g ` R ) ) |
25 |
22 24
|
syl |
|- ( ph -> ( 1 .^ ( 0g ` R ) ) = ( 0g ` R ) ) |
26 |
|
simplr |
|- ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> y e. NN ) |
27 |
22
|
ad2antrr |
|- ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( 0g ` R ) e. ( Base ` ( mulGrp ` R ) ) ) |
28 |
|
eqid |
|- ( +g ` ( mulGrp ` R ) ) = ( +g ` ( mulGrp ` R ) ) |
29 |
23 3 28
|
mulgnnp1 |
|- ( ( y e. NN /\ ( 0g ` R ) e. ( Base ` ( mulGrp ` R ) ) ) -> ( ( y + 1 ) .^ ( 0g ` R ) ) = ( ( y .^ ( 0g ` R ) ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) ) |
30 |
26 27 29
|
syl2anc |
|- ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( ( y + 1 ) .^ ( 0g ` R ) ) = ( ( y .^ ( 0g ` R ) ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) ) |
31 |
|
simpr |
|- ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) |
32 |
31
|
oveq1d |
|- ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( ( y .^ ( 0g ` R ) ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( ( 0g ` R ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) ) |
33 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
34 |
19 33
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
35 |
34
|
eqcomi |
|- ( +g ` ( mulGrp ` R ) ) = ( .r ` R ) |
36 |
15 35 16
|
ringrz |
|- ( ( R e. Ring /\ ( 0g ` R ) e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( 0g ` R ) ) |
37 |
1 18 36
|
syl2anc |
|- ( ph -> ( ( 0g ` R ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( 0g ` R ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ y e. NN ) -> ( ( 0g ` R ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( 0g ` R ) ) |
39 |
38
|
adantr |
|- ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( ( 0g ` R ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( 0g ` R ) ) |
40 |
32 39
|
eqtrd |
|- ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( ( y .^ ( 0g ` R ) ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( 0g ` R ) ) |
41 |
30 40
|
eqtrd |
|- ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( ( y + 1 ) .^ ( 0g ` R ) ) = ( 0g ` R ) ) |
42 |
6 8 10 12 25 41
|
nnindd |
|- ( ( ph /\ N e. NN ) -> ( N .^ ( 0g ` R ) ) = ( 0g ` R ) ) |
43 |
4 42
|
syl |
|- ( ph -> ( N .^ ( 0g ` R ) ) = ( 0g ` R ) ) |