| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringexp0nn.1 |  |-  ( ph -> R e. Ring ) | 
						
							| 2 |  | ringexp0nn.2 |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | ringexp0nn.3 |  |-  .^ = ( .g ` ( mulGrp ` R ) ) | 
						
							| 4 | 2 | ancli |  |-  ( ph -> ( ph /\ N e. NN ) ) | 
						
							| 5 |  | oveq1 |  |-  ( x = 1 -> ( x .^ ( 0g ` R ) ) = ( 1 .^ ( 0g ` R ) ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( x = 1 -> ( ( x .^ ( 0g ` R ) ) = ( 0g ` R ) <-> ( 1 .^ ( 0g ` R ) ) = ( 0g ` R ) ) ) | 
						
							| 7 |  | oveq1 |  |-  ( x = y -> ( x .^ ( 0g ` R ) ) = ( y .^ ( 0g ` R ) ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( x = y -> ( ( x .^ ( 0g ` R ) ) = ( 0g ` R ) <-> ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) ) | 
						
							| 9 |  | oveq1 |  |-  ( x = ( y + 1 ) -> ( x .^ ( 0g ` R ) ) = ( ( y + 1 ) .^ ( 0g ` R ) ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( x = ( y + 1 ) -> ( ( x .^ ( 0g ` R ) ) = ( 0g ` R ) <-> ( ( y + 1 ) .^ ( 0g ` R ) ) = ( 0g ` R ) ) ) | 
						
							| 11 |  | oveq1 |  |-  ( x = N -> ( x .^ ( 0g ` R ) ) = ( N .^ ( 0g ` R ) ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( x = N -> ( ( x .^ ( 0g ` R ) ) = ( 0g ` R ) <-> ( N .^ ( 0g ` R ) ) = ( 0g ` R ) ) ) | 
						
							| 13 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 14 | 1 13 | syl |  |-  ( ph -> R e. Mnd ) | 
						
							| 15 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 17 | 15 16 | mndidcl |  |-  ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 18 | 14 17 | syl |  |-  ( ph -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 19 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 20 | 19 15 | mgpbas |  |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 21 | 20 | a1i |  |-  ( ph -> ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 22 | 18 21 | eleqtrd |  |-  ( ph -> ( 0g ` R ) e. ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 23 |  | eqid |  |-  ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 24 | 23 3 | mulg1 |  |-  ( ( 0g ` R ) e. ( Base ` ( mulGrp ` R ) ) -> ( 1 .^ ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 25 | 22 24 | syl |  |-  ( ph -> ( 1 .^ ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 26 |  | simplr |  |-  ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> y e. NN ) | 
						
							| 27 | 22 | ad2antrr |  |-  ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( 0g ` R ) e. ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 28 |  | eqid |  |-  ( +g ` ( mulGrp ` R ) ) = ( +g ` ( mulGrp ` R ) ) | 
						
							| 29 | 23 3 28 | mulgnnp1 |  |-  ( ( y e. NN /\ ( 0g ` R ) e. ( Base ` ( mulGrp ` R ) ) ) -> ( ( y + 1 ) .^ ( 0g ` R ) ) = ( ( y .^ ( 0g ` R ) ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) ) | 
						
							| 30 | 26 27 29 | syl2anc |  |-  ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( ( y + 1 ) .^ ( 0g ` R ) ) = ( ( y .^ ( 0g ` R ) ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) ) | 
						
							| 31 |  | simpr |  |-  ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( ( y .^ ( 0g ` R ) ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( ( 0g ` R ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) ) | 
						
							| 33 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 34 | 19 33 | mgpplusg |  |-  ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) | 
						
							| 35 | 34 | eqcomi |  |-  ( +g ` ( mulGrp ` R ) ) = ( .r ` R ) | 
						
							| 36 | 15 35 16 | ringrz |  |-  ( ( R e. Ring /\ ( 0g ` R ) e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 37 | 1 18 36 | syl2anc |  |-  ( ph -> ( ( 0g ` R ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ y e. NN ) -> ( ( 0g ` R ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( ( 0g ` R ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 40 | 32 39 | eqtrd |  |-  ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( ( y .^ ( 0g ` R ) ) ( +g ` ( mulGrp ` R ) ) ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 41 | 30 40 | eqtrd |  |-  ( ( ( ph /\ y e. NN ) /\ ( y .^ ( 0g ` R ) ) = ( 0g ` R ) ) -> ( ( y + 1 ) .^ ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 42 | 6 8 10 12 25 41 | nnindd |  |-  ( ( ph /\ N e. NN ) -> ( N .^ ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 43 | 4 42 | syl |  |-  ( ph -> ( N .^ ( 0g ` R ) ) = ( 0g ` R ) ) |