| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1p5.1 |  |-  ( ph -> K e. Field ) | 
						
							| 2 |  | aks6d1p5.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 3 |  | aks6d1c5.3 |  |-  P = ( chr ` K ) | 
						
							| 4 |  | aks6d1c5.4 |  |-  ( ph -> A e. NN0 ) | 
						
							| 5 |  | aks6d1c5.5 |  |-  ( ph -> A < P ) | 
						
							| 6 |  | aks6d1c5.6 |  |-  X = ( var1 ` K ) | 
						
							| 7 |  | aks6d1c5.7 |  |-  .^ = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 8 |  | aks6d1c5.8 |  |-  G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 10 | 1 | fldcrngd |  |-  ( ph -> K e. CRing ) | 
						
							| 11 |  | eqid |  |-  ( Poly1 ` K ) = ( Poly1 ` K ) | 
						
							| 12 | 11 | ply1crng |  |-  ( K e. CRing -> ( Poly1 ` K ) e. CRing ) | 
						
							| 13 | 10 12 | syl |  |-  ( ph -> ( Poly1 ` K ) e. CRing ) | 
						
							| 14 |  | eqid |  |-  ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) | 
						
							| 15 | 14 | crngmgp |  |-  ( ( Poly1 ` K ) e. CRing -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) | 
						
							| 16 | 13 15 | syl |  |-  ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) | 
						
							| 18 |  | fzfid |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( 0 ... A ) e. Fin ) | 
						
							| 19 | 17 | cmnmndd |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) | 
						
							| 21 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 22 | 21 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 23 |  | ovexd |  |-  ( ph -> ( 0 ... A ) e. _V ) | 
						
							| 24 | 22 23 | elmapd |  |-  ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) <-> g : ( 0 ... A ) --> NN0 ) ) | 
						
							| 25 | 24 | biimpd |  |-  ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) -> g : ( 0 ... A ) --> NN0 ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> g : ( 0 ... A ) --> NN0 ) | 
						
							| 27 | 26 | ffvelcdmda |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( g ` i ) e. NN0 ) | 
						
							| 28 | 13 | crngringd |  |-  ( ph -> ( Poly1 ` K ) e. Ring ) | 
						
							| 29 | 28 | ringcmnd |  |-  ( ph -> ( Poly1 ` K ) e. CMnd ) | 
						
							| 30 |  | cmnmnd |  |-  ( ( Poly1 ` K ) e. CMnd -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 31 | 29 30 | syl |  |-  ( ph -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 34 | 10 | crngringd |  |-  ( ph -> K e. Ring ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> K e. Ring ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> K e. Ring ) | 
						
							| 37 |  | eqid |  |-  ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) | 
						
							| 38 | 6 11 37 | vr1cl |  |-  ( K e. Ring -> X e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 39 | 36 38 | syl |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> X e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 40 |  | simpl |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) ) | 
						
							| 41 |  | elfzelz |  |-  ( i e. ( 0 ... A ) -> i e. ZZ ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> i e. ZZ ) | 
						
							| 43 | 40 42 | jca |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ZZ ) ) | 
						
							| 44 |  | eqid |  |-  ( ZRHom ` K ) = ( ZRHom ` K ) | 
						
							| 45 | 44 | zrhrhm |  |-  ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) | 
						
							| 46 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 47 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 48 | 46 47 | rhmf |  |-  ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 49 | 45 48 | syl |  |-  ( K e. Ring -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 50 | 35 49 | syl |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 51 | 50 | ffvelcdmda |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ZZ ) -> ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) | 
						
							| 52 | 43 51 | syl |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) | 
						
							| 53 |  | eqid |  |-  ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) | 
						
							| 54 | 11 53 47 37 | ply1sclcl |  |-  ( ( K e. Ring /\ ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 55 | 36 52 54 | syl2anc |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 56 |  | eqid |  |-  ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) | 
						
							| 57 | 37 56 | mndcl |  |-  ( ( ( Poly1 ` K ) e. Mnd /\ X e. ( Base ` ( Poly1 ` K ) ) /\ ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 58 | 33 39 55 57 | syl3anc |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 59 | 14 37 | mgpbas |  |-  ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 60 | 59 | a1i |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) | 
						
							| 61 | 58 60 | eleqtrd |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) | 
						
							| 62 | 9 7 20 27 61 | mulgnn0cld |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) | 
						
							| 63 | 62 | ralrimiva |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> A. i e. ( 0 ... A ) ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) | 
						
							| 64 | 9 17 18 63 | gsummptcl |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) | 
						
							| 65 | 59 | eqcomi |  |-  ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) | 
						
							| 66 | 65 | a1i |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 67 | 64 66 | eleqtrd |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 68 | 67 8 | fmptd |  |-  ( ph -> G : ( NN0 ^m ( 0 ... A ) ) --> ( Base ` ( Poly1 ` K ) ) ) |