| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1p5.1 |
|- ( ph -> K e. Field ) |
| 2 |
|
aks6d1p5.2 |
|- ( ph -> P e. Prime ) |
| 3 |
|
aks6d1c5.3 |
|- P = ( chr ` K ) |
| 4 |
|
aks6d1c5.4 |
|- ( ph -> A e. NN0 ) |
| 5 |
|
aks6d1c5.5 |
|- ( ph -> A < P ) |
| 6 |
|
aks6d1c5.6 |
|- X = ( var1 ` K ) |
| 7 |
|
aks6d1c5.7 |
|- .^ = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 8 |
|
aks6d1c5.8 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
| 9 |
|
eqid |
|- ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 10 |
1
|
fldcrngd |
|- ( ph -> K e. CRing ) |
| 11 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
| 12 |
11
|
ply1crng |
|- ( K e. CRing -> ( Poly1 ` K ) e. CRing ) |
| 13 |
10 12
|
syl |
|- ( ph -> ( Poly1 ` K ) e. CRing ) |
| 14 |
|
eqid |
|- ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) |
| 15 |
14
|
crngmgp |
|- ( ( Poly1 ` K ) e. CRing -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) |
| 16 |
13 15
|
syl |
|- ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) |
| 18 |
|
fzfid |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( 0 ... A ) e. Fin ) |
| 19 |
17
|
cmnmndd |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
| 20 |
19
|
adantr |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
| 21 |
|
nn0ex |
|- NN0 e. _V |
| 22 |
21
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 23 |
|
ovexd |
|- ( ph -> ( 0 ... A ) e. _V ) |
| 24 |
22 23
|
elmapd |
|- ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) <-> g : ( 0 ... A ) --> NN0 ) ) |
| 25 |
24
|
biimpd |
|- ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) -> g : ( 0 ... A ) --> NN0 ) ) |
| 26 |
25
|
imp |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> g : ( 0 ... A ) --> NN0 ) |
| 27 |
26
|
ffvelcdmda |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( g ` i ) e. NN0 ) |
| 28 |
13
|
crngringd |
|- ( ph -> ( Poly1 ` K ) e. Ring ) |
| 29 |
28
|
ringcmnd |
|- ( ph -> ( Poly1 ` K ) e. CMnd ) |
| 30 |
|
cmnmnd |
|- ( ( Poly1 ` K ) e. CMnd -> ( Poly1 ` K ) e. Mnd ) |
| 31 |
29 30
|
syl |
|- ( ph -> ( Poly1 ` K ) e. Mnd ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( Poly1 ` K ) e. Mnd ) |
| 33 |
32
|
adantr |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( Poly1 ` K ) e. Mnd ) |
| 34 |
10
|
crngringd |
|- ( ph -> K e. Ring ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> K e. Ring ) |
| 36 |
35
|
adantr |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> K e. Ring ) |
| 37 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
| 38 |
6 11 37
|
vr1cl |
|- ( K e. Ring -> X e. ( Base ` ( Poly1 ` K ) ) ) |
| 39 |
36 38
|
syl |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> X e. ( Base ` ( Poly1 ` K ) ) ) |
| 40 |
|
simpl |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) ) |
| 41 |
|
elfzelz |
|- ( i e. ( 0 ... A ) -> i e. ZZ ) |
| 42 |
41
|
adantl |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> i e. ZZ ) |
| 43 |
40 42
|
jca |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ZZ ) ) |
| 44 |
|
eqid |
|- ( ZRHom ` K ) = ( ZRHom ` K ) |
| 45 |
44
|
zrhrhm |
|- ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
| 46 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 47 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 48 |
46 47
|
rhmf |
|- ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 49 |
45 48
|
syl |
|- ( K e. Ring -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 50 |
35 49
|
syl |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 51 |
50
|
ffvelcdmda |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ZZ ) -> ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) |
| 52 |
43 51
|
syl |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) |
| 53 |
|
eqid |
|- ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) |
| 54 |
11 53 47 37
|
ply1sclcl |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 55 |
36 52 54
|
syl2anc |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 56 |
|
eqid |
|- ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) |
| 57 |
37 56
|
mndcl |
|- ( ( ( Poly1 ` K ) e. Mnd /\ X e. ( Base ` ( Poly1 ` K ) ) /\ ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 58 |
33 39 55 57
|
syl3anc |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 59 |
14 37
|
mgpbas |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 60 |
59
|
a1i |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 61 |
58 60
|
eleqtrd |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 62 |
9 7 20 27 61
|
mulgnn0cld |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 63 |
62
|
ralrimiva |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> A. i e. ( 0 ... A ) ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 64 |
9 17 18 63
|
gsummptcl |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 65 |
59
|
eqcomi |
|- ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) |
| 66 |
65
|
a1i |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) ) |
| 67 |
64 66
|
eleqtrd |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 68 |
67 8
|
fmptd |
|- ( ph -> G : ( NN0 ^m ( 0 ... A ) ) --> ( Base ` ( Poly1 ` K ) ) ) |