Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1p5.1 |
|- ( ph -> K e. Field ) |
2 |
|
aks6d1p5.2 |
|- ( ph -> P e. Prime ) |
3 |
|
aks6d1c5.3 |
|- P = ( chr ` K ) |
4 |
|
aks6d1c5.4 |
|- ( ph -> A e. NN0 ) |
5 |
|
aks6d1c5.5 |
|- ( ph -> A < P ) |
6 |
|
aks6d1c5.6 |
|- X = ( var1 ` K ) |
7 |
|
aks6d1c5.7 |
|- .^ = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
8 |
|
aks6d1c5.8 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
9 |
|
aks6d1c5p1.1 |
|- ( ph -> B e. ( 0 ... A ) ) |
10 |
|
aks6d1c5p1.2 |
|- ( ph -> C e. ( 0 ... A ) ) |
11 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
12 |
11
|
eqcomi |
|- ( +g ` ZZring ) = + |
13 |
12
|
a1i |
|- ( ph -> ( +g ` ZZring ) = + ) |
14 |
13
|
oveqd |
|- ( ph -> ( ( 0 - C ) ( +g ` ZZring ) B ) = ( ( 0 - C ) + B ) ) |
15 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
16 |
10
|
elfzelzd |
|- ( ph -> C e. ZZ ) |
17 |
16
|
zcnd |
|- ( ph -> C e. CC ) |
18 |
9
|
elfzelzd |
|- ( ph -> B e. ZZ ) |
19 |
18
|
zcnd |
|- ( ph -> B e. CC ) |
20 |
15 17 19
|
subadd23d |
|- ( ph -> ( ( 0 - C ) + B ) = ( 0 + ( B - C ) ) ) |
21 |
19 17
|
subcld |
|- ( ph -> ( B - C ) e. CC ) |
22 |
21
|
addlidd |
|- ( ph -> ( 0 + ( B - C ) ) = ( B - C ) ) |
23 |
20 22
|
eqtrd |
|- ( ph -> ( ( 0 - C ) + B ) = ( B - C ) ) |
24 |
14 23
|
eqtrd |
|- ( ph -> ( ( 0 - C ) ( +g ` ZZring ) B ) = ( B - C ) ) |
25 |
24
|
fveq2d |
|- ( ph -> ( ( ZRHom ` K ) ` ( ( 0 - C ) ( +g ` ZZring ) B ) ) = ( ( ZRHom ` K ) ` ( B - C ) ) ) |
26 |
25
|
eqeq1d |
|- ( ph -> ( ( ( ZRHom ` K ) ` ( ( 0 - C ) ( +g ` ZZring ) B ) ) = ( 0g ` K ) <-> ( ( ZRHom ` K ) ` ( B - C ) ) = ( 0g ` K ) ) ) |
27 |
2
|
adantr |
|- ( ( ph /\ B = C ) -> P e. Prime ) |
28 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
29 |
27 28
|
syl |
|- ( ( ph /\ B = C ) -> P e. NN ) |
30 |
29
|
nnzd |
|- ( ( ph /\ B = C ) -> P e. ZZ ) |
31 |
|
dvds0 |
|- ( P e. ZZ -> P || 0 ) |
32 |
30 31
|
syl |
|- ( ( ph /\ B = C ) -> P || 0 ) |
33 |
19
|
adantr |
|- ( ( ph /\ B = C ) -> B e. CC ) |
34 |
33
|
subidd |
|- ( ( ph /\ B = C ) -> ( B - B ) = 0 ) |
35 |
34
|
eqcomd |
|- ( ( ph /\ B = C ) -> 0 = ( B - B ) ) |
36 |
|
simpr |
|- ( ( ph /\ B = C ) -> B = C ) |
37 |
36
|
oveq2d |
|- ( ( ph /\ B = C ) -> ( B - B ) = ( B - C ) ) |
38 |
35 37
|
eqtrd |
|- ( ( ph /\ B = C ) -> 0 = ( B - C ) ) |
39 |
32 38
|
breqtrd |
|- ( ( ph /\ B = C ) -> P || ( B - C ) ) |
40 |
39
|
ex |
|- ( ph -> ( B = C -> P || ( B - C ) ) ) |
41 |
2 28
|
syl |
|- ( ph -> P e. NN ) |
42 |
41
|
adantr |
|- ( ( ph /\ -. B = C ) -> P e. NN ) |
43 |
42
|
adantr |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> P e. NN ) |
44 |
|
1zzd |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> 1 e. ZZ ) |
45 |
43
|
nnzd |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> P e. ZZ ) |
46 |
45 44
|
zsubcld |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( P - 1 ) e. ZZ ) |
47 |
18 16
|
zsubcld |
|- ( ph -> ( B - C ) e. ZZ ) |
48 |
47
|
ad2antrr |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( B - C ) e. ZZ ) |
49 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
50 |
49
|
a1i |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> 1 = ( 0 + 1 ) ) |
51 |
|
simpr |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> C < B ) |
52 |
16
|
zred |
|- ( ph -> C e. RR ) |
53 |
52
|
adantr |
|- ( ( ph /\ -. B = C ) -> C e. RR ) |
54 |
53
|
adantr |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> C e. RR ) |
55 |
18
|
zred |
|- ( ph -> B e. RR ) |
56 |
55
|
adantr |
|- ( ( ph /\ -. B = C ) -> B e. RR ) |
57 |
56
|
adantr |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> B e. RR ) |
58 |
54 57
|
posdifd |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( C < B <-> 0 < ( B - C ) ) ) |
59 |
51 58
|
mpbid |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> 0 < ( B - C ) ) |
60 |
|
0zd |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> 0 e. ZZ ) |
61 |
60 48
|
zltp1led |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( 0 < ( B - C ) <-> ( 0 + 1 ) <_ ( B - C ) ) ) |
62 |
59 61
|
mpbid |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( 0 + 1 ) <_ ( B - C ) ) |
63 |
50 62
|
eqbrtrd |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> 1 <_ ( B - C ) ) |
64 |
48
|
zred |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( B - C ) e. RR ) |
65 |
43
|
nnred |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> P e. RR ) |
66 |
|
elfzle1 |
|- ( C e. ( 0 ... A ) -> 0 <_ C ) |
67 |
10 66
|
syl |
|- ( ph -> 0 <_ C ) |
68 |
67
|
adantr |
|- ( ( ph /\ -. B = C ) -> 0 <_ C ) |
69 |
68
|
adantr |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> 0 <_ C ) |
70 |
57 54
|
subge02d |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( 0 <_ C <-> ( B - C ) <_ B ) ) |
71 |
69 70
|
mpbid |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( B - C ) <_ B ) |
72 |
4
|
nn0red |
|- ( ph -> A e. RR ) |
73 |
41
|
nnred |
|- ( ph -> P e. RR ) |
74 |
|
elfzle2 |
|- ( B e. ( 0 ... A ) -> B <_ A ) |
75 |
9 74
|
syl |
|- ( ph -> B <_ A ) |
76 |
55 72 73 75 5
|
lelttrd |
|- ( ph -> B < P ) |
77 |
76
|
adantr |
|- ( ( ph /\ -. B = C ) -> B < P ) |
78 |
77
|
adantr |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> B < P ) |
79 |
64 57 65 71 78
|
lelttrd |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( B - C ) < P ) |
80 |
48 45
|
zltlem1d |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( ( B - C ) < P <-> ( B - C ) <_ ( P - 1 ) ) ) |
81 |
79 80
|
mpbid |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( B - C ) <_ ( P - 1 ) ) |
82 |
44 46 48 63 81
|
elfzd |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> ( B - C ) e. ( 1 ... ( P - 1 ) ) ) |
83 |
|
fzm1ndvds |
|- ( ( P e. NN /\ ( B - C ) e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( B - C ) ) |
84 |
43 82 83
|
syl2anc |
|- ( ( ( ph /\ -. B = C ) /\ C < B ) -> -. P || ( B - C ) ) |
85 |
|
simpll |
|- ( ( ( ph /\ -. B = C ) /\ -. C < B ) -> ph ) |
86 |
|
axlttri |
|- ( ( B e. RR /\ C e. RR ) -> ( B < C <-> -. ( B = C \/ C < B ) ) ) |
87 |
55 52 86
|
syl2anc |
|- ( ph -> ( B < C <-> -. ( B = C \/ C < B ) ) ) |
88 |
|
ioran |
|- ( -. ( B = C \/ C < B ) <-> ( -. B = C /\ -. C < B ) ) |
89 |
88
|
a1i |
|- ( ph -> ( -. ( B = C \/ C < B ) <-> ( -. B = C /\ -. C < B ) ) ) |
90 |
87 89
|
bitr2d |
|- ( ph -> ( ( -. B = C /\ -. C < B ) <-> B < C ) ) |
91 |
90
|
biimpd |
|- ( ph -> ( ( -. B = C /\ -. C < B ) -> B < C ) ) |
92 |
91
|
imp |
|- ( ( ph /\ ( -. B = C /\ -. C < B ) ) -> B < C ) |
93 |
92
|
anassrs |
|- ( ( ( ph /\ -. B = C ) /\ -. C < B ) -> B < C ) |
94 |
85 93
|
jca |
|- ( ( ( ph /\ -. B = C ) /\ -. C < B ) -> ( ph /\ B < C ) ) |
95 |
41
|
adantr |
|- ( ( ph /\ B < C ) -> P e. NN ) |
96 |
|
1zzd |
|- ( ( ph /\ B < C ) -> 1 e. ZZ ) |
97 |
41
|
nnzd |
|- ( ph -> P e. ZZ ) |
98 |
97
|
adantr |
|- ( ( ph /\ B < C ) -> P e. ZZ ) |
99 |
98 96
|
zsubcld |
|- ( ( ph /\ B < C ) -> ( P - 1 ) e. ZZ ) |
100 |
16
|
adantr |
|- ( ( ph /\ B < C ) -> C e. ZZ ) |
101 |
18
|
adantr |
|- ( ( ph /\ B < C ) -> B e. ZZ ) |
102 |
100 101
|
zsubcld |
|- ( ( ph /\ B < C ) -> ( C - B ) e. ZZ ) |
103 |
49
|
a1i |
|- ( ( ph /\ B < C ) -> 1 = ( 0 + 1 ) ) |
104 |
55 52
|
posdifd |
|- ( ph -> ( B < C <-> 0 < ( C - B ) ) ) |
105 |
104
|
biimpd |
|- ( ph -> ( B < C -> 0 < ( C - B ) ) ) |
106 |
105
|
imp |
|- ( ( ph /\ B < C ) -> 0 < ( C - B ) ) |
107 |
|
0zd |
|- ( ( ph /\ B < C ) -> 0 e. ZZ ) |
108 |
107 102
|
zltp1led |
|- ( ( ph /\ B < C ) -> ( 0 < ( C - B ) <-> ( 0 + 1 ) <_ ( C - B ) ) ) |
109 |
106 108
|
mpbid |
|- ( ( ph /\ B < C ) -> ( 0 + 1 ) <_ ( C - B ) ) |
110 |
103 109
|
eqbrtrd |
|- ( ( ph /\ B < C ) -> 1 <_ ( C - B ) ) |
111 |
102
|
zred |
|- ( ( ph /\ B < C ) -> ( C - B ) e. RR ) |
112 |
52
|
adantr |
|- ( ( ph /\ B < C ) -> C e. RR ) |
113 |
73
|
adantr |
|- ( ( ph /\ B < C ) -> P e. RR ) |
114 |
9
|
adantr |
|- ( ( ph /\ B < C ) -> B e. ( 0 ... A ) ) |
115 |
|
elfzle1 |
|- ( B e. ( 0 ... A ) -> 0 <_ B ) |
116 |
114 115
|
syl |
|- ( ( ph /\ B < C ) -> 0 <_ B ) |
117 |
55
|
adantr |
|- ( ( ph /\ B < C ) -> B e. RR ) |
118 |
112 117
|
subge02d |
|- ( ( ph /\ B < C ) -> ( 0 <_ B <-> ( C - B ) <_ C ) ) |
119 |
116 118
|
mpbid |
|- ( ( ph /\ B < C ) -> ( C - B ) <_ C ) |
120 |
72
|
adantr |
|- ( ( ph /\ B < C ) -> A e. RR ) |
121 |
|
elfzle2 |
|- ( C e. ( 0 ... A ) -> C <_ A ) |
122 |
10 121
|
syl |
|- ( ph -> C <_ A ) |
123 |
122
|
adantr |
|- ( ( ph /\ B < C ) -> C <_ A ) |
124 |
5
|
adantr |
|- ( ( ph /\ B < C ) -> A < P ) |
125 |
112 120 113 123 124
|
lelttrd |
|- ( ( ph /\ B < C ) -> C < P ) |
126 |
111 112 113 119 125
|
lelttrd |
|- ( ( ph /\ B < C ) -> ( C - B ) < P ) |
127 |
102 98
|
zltlem1d |
|- ( ( ph /\ B < C ) -> ( ( C - B ) < P <-> ( C - B ) <_ ( P - 1 ) ) ) |
128 |
126 127
|
mpbid |
|- ( ( ph /\ B < C ) -> ( C - B ) <_ ( P - 1 ) ) |
129 |
96 99 102 110 128
|
elfzd |
|- ( ( ph /\ B < C ) -> ( C - B ) e. ( 1 ... ( P - 1 ) ) ) |
130 |
|
fzm1ndvds |
|- ( ( P e. NN /\ ( C - B ) e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( C - B ) ) |
131 |
95 129 130
|
syl2anc |
|- ( ( ph /\ B < C ) -> -. P || ( C - B ) ) |
132 |
|
dvdsnegb |
|- ( ( P e. ZZ /\ ( B - C ) e. ZZ ) -> ( P || ( B - C ) <-> P || -u ( B - C ) ) ) |
133 |
97 47 132
|
syl2anc |
|- ( ph -> ( P || ( B - C ) <-> P || -u ( B - C ) ) ) |
134 |
19 17
|
negsubdi2d |
|- ( ph -> -u ( B - C ) = ( C - B ) ) |
135 |
134
|
breq2d |
|- ( ph -> ( P || -u ( B - C ) <-> P || ( C - B ) ) ) |
136 |
133 135
|
bitrd |
|- ( ph -> ( P || ( B - C ) <-> P || ( C - B ) ) ) |
137 |
136
|
adantr |
|- ( ( ph /\ B < C ) -> ( P || ( B - C ) <-> P || ( C - B ) ) ) |
138 |
131 137
|
mtbird |
|- ( ( ph /\ B < C ) -> -. P || ( B - C ) ) |
139 |
94 138
|
syl |
|- ( ( ( ph /\ -. B = C ) /\ -. C < B ) -> -. P || ( B - C ) ) |
140 |
84 139
|
pm2.61dan |
|- ( ( ph /\ -. B = C ) -> -. P || ( B - C ) ) |
141 |
140
|
ex |
|- ( ph -> ( -. B = C -> -. P || ( B - C ) ) ) |
142 |
141
|
con4d |
|- ( ph -> ( P || ( B - C ) -> B = C ) ) |
143 |
40 142
|
impbid |
|- ( ph -> ( B = C <-> P || ( B - C ) ) ) |
144 |
1
|
fldcrngd |
|- ( ph -> K e. CRing ) |
145 |
|
crngring |
|- ( K e. CRing -> K e. Ring ) |
146 |
144 145
|
syl |
|- ( ph -> K e. Ring ) |
147 |
|
eqid |
|- ( ZRHom ` K ) = ( ZRHom ` K ) |
148 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
149 |
3 147 148
|
chrdvds |
|- ( ( K e. Ring /\ ( B - C ) e. ZZ ) -> ( P || ( B - C ) <-> ( ( ZRHom ` K ) ` ( B - C ) ) = ( 0g ` K ) ) ) |
150 |
146 47 149
|
syl2anc |
|- ( ph -> ( P || ( B - C ) <-> ( ( ZRHom ` K ) ` ( B - C ) ) = ( 0g ` K ) ) ) |
151 |
143 150
|
bitr2d |
|- ( ph -> ( ( ( ZRHom ` K ) ` ( B - C ) ) = ( 0g ` K ) <-> B = C ) ) |
152 |
26 151
|
bitrd |
|- ( ph -> ( ( ( ZRHom ` K ) ` ( ( 0 - C ) ( +g ` ZZring ) B ) ) = ( 0g ` K ) <-> B = C ) ) |
153 |
152
|
bicomd |
|- ( ph -> ( B = C <-> ( ( ZRHom ` K ) ` ( ( 0 - C ) ( +g ` ZZring ) B ) ) = ( 0g ` K ) ) ) |
154 |
147
|
zrhrhm |
|- ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
155 |
|
rhmghm |
|- ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) e. ( ZZring GrpHom K ) ) |
156 |
154 155
|
syl |
|- ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring GrpHom K ) ) |
157 |
146 156
|
syl |
|- ( ph -> ( ZRHom ` K ) e. ( ZZring GrpHom K ) ) |
158 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
159 |
158 16
|
zsubcld |
|- ( ph -> ( 0 - C ) e. ZZ ) |
160 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
161 |
159 160
|
eleqtrdi |
|- ( ph -> ( 0 - C ) e. ( Base ` ZZring ) ) |
162 |
18 160
|
eleqtrdi |
|- ( ph -> B e. ( Base ` ZZring ) ) |
163 |
|
eqid |
|- ( Base ` ZZring ) = ( Base ` ZZring ) |
164 |
|
eqid |
|- ( +g ` ZZring ) = ( +g ` ZZring ) |
165 |
|
eqid |
|- ( +g ` K ) = ( +g ` K ) |
166 |
163 164 165
|
ghmlin |
|- ( ( ( ZRHom ` K ) e. ( ZZring GrpHom K ) /\ ( 0 - C ) e. ( Base ` ZZring ) /\ B e. ( Base ` ZZring ) ) -> ( ( ZRHom ` K ) ` ( ( 0 - C ) ( +g ` ZZring ) B ) ) = ( ( ( ZRHom ` K ) ` ( 0 - C ) ) ( +g ` K ) ( ( ZRHom ` K ) ` B ) ) ) |
167 |
157 161 162 166
|
syl3anc |
|- ( ph -> ( ( ZRHom ` K ) ` ( ( 0 - C ) ( +g ` ZZring ) B ) ) = ( ( ( ZRHom ` K ) ` ( 0 - C ) ) ( +g ` K ) ( ( ZRHom ` K ) ` B ) ) ) |
168 |
167
|
eqeq1d |
|- ( ph -> ( ( ( ZRHom ` K ) ` ( ( 0 - C ) ( +g ` ZZring ) B ) ) = ( 0g ` K ) <-> ( ( ( ZRHom ` K ) ` ( 0 - C ) ) ( +g ` K ) ( ( ZRHom ` K ) ` B ) ) = ( 0g ` K ) ) ) |
169 |
153 168
|
bitrd |
|- ( ph -> ( B = C <-> ( ( ( ZRHom ` K ) ` ( 0 - C ) ) ( +g ` K ) ( ( ZRHom ` K ) ` B ) ) = ( 0g ` K ) ) ) |
170 |
|
eqid |
|- ( eval1 ` K ) = ( eval1 ` K ) |
171 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
172 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
173 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
174 |
160 172
|
ghmf |
|- ( ( ZRHom ` K ) e. ( ZZring GrpHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
175 |
157 174
|
syl |
|- ( ph -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
176 |
175 159
|
ffvelcdmd |
|- ( ph -> ( ( ZRHom ` K ) ` ( 0 - C ) ) e. ( Base ` K ) ) |
177 |
170 6 172 171 173 144 176
|
evl1vard |
|- ( ph -> ( X e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` X ) ` ( ( ZRHom ` K ) ` ( 0 - C ) ) ) = ( ( ZRHom ` K ) ` ( 0 - C ) ) ) ) |
178 |
|
eqid |
|- ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) |
179 |
175 18
|
ffvelcdmd |
|- ( ph -> ( ( ZRHom ` K ) ` B ) e. ( Base ` K ) ) |
180 |
170 171 172 178 173 144 179 176
|
evl1scad |
|- ( ph -> ( ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` B ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` B ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - C ) ) ) = ( ( ZRHom ` K ) ` B ) ) ) |
181 |
|
eqid |
|- ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) |
182 |
170 171 172 173 144 176 177 180 181 165
|
evl1addd |
|- ( ph -> ( ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` B ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` B ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - C ) ) ) = ( ( ( ZRHom ` K ) ` ( 0 - C ) ) ( +g ` K ) ( ( ZRHom ` K ) ` B ) ) ) ) |
183 |
182
|
simprd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` B ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - C ) ) ) = ( ( ( ZRHom ` K ) ` ( 0 - C ) ) ( +g ` K ) ( ( ZRHom ` K ) ` B ) ) ) |
184 |
183
|
eqcomd |
|- ( ph -> ( ( ( ZRHom ` K ) ` ( 0 - C ) ) ( +g ` K ) ( ( ZRHom ` K ) ` B ) ) = ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` B ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - C ) ) ) ) |
185 |
184
|
eqeq1d |
|- ( ph -> ( ( ( ( ZRHom ` K ) ` ( 0 - C ) ) ( +g ` K ) ( ( ZRHom ` K ) ` B ) ) = ( 0g ` K ) <-> ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` B ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - C ) ) ) = ( 0g ` K ) ) ) |
186 |
169 185
|
bitrd |
|- ( ph -> ( B = C <-> ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` B ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - C ) ) ) = ( 0g ` K ) ) ) |