| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1p5.1 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 2 |  | aks6d1p5.2 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | aks6d1c5.3 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 4 |  | aks6d1c5.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 5 |  | aks6d1c5.5 | ⊢ ( 𝜑  →  𝐴  <  𝑃 ) | 
						
							| 6 |  | aks6d1c5.6 | ⊢ 𝑋  =  ( var1 ‘ 𝐾 ) | 
						
							| 7 |  | aks6d1c5.7 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 8 |  | aks6d1c5.8 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 9 |  | aks6d1c5p1.1 | ⊢ ( 𝜑  →  𝐵  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 10 |  | aks6d1c5p1.2 | ⊢ ( 𝜑  →  𝐶  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 11 |  | zringplusg | ⊢  +   =  ( +g ‘ ℤring ) | 
						
							| 12 | 11 | eqcomi | ⊢ ( +g ‘ ℤring )  =   + | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( +g ‘ ℤring )  =   +  ) | 
						
							| 14 | 13 | oveqd | ⊢ ( 𝜑  →  ( ( 0  −  𝐶 ) ( +g ‘ ℤring ) 𝐵 )  =  ( ( 0  −  𝐶 )  +  𝐵 ) ) | 
						
							| 15 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 16 | 10 | elfzelzd | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 17 | 16 | zcnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 18 | 9 | elfzelzd | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 19 | 18 | zcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 20 | 15 17 19 | subadd23d | ⊢ ( 𝜑  →  ( ( 0  −  𝐶 )  +  𝐵 )  =  ( 0  +  ( 𝐵  −  𝐶 ) ) ) | 
						
							| 21 | 19 17 | subcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  ∈  ℂ ) | 
						
							| 22 | 21 | addlidd | ⊢ ( 𝜑  →  ( 0  +  ( 𝐵  −  𝐶 ) )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 23 | 20 22 | eqtrd | ⊢ ( 𝜑  →  ( ( 0  −  𝐶 )  +  𝐵 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 24 | 14 23 | eqtrd | ⊢ ( 𝜑  →  ( ( 0  −  𝐶 ) ( +g ‘ ℤring ) 𝐵 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝐶 ) ( +g ‘ ℤring ) 𝐵 ) )  =  ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝐵  −  𝐶 ) ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝐶 ) ( +g ‘ ℤring ) 𝐵 ) )  =  ( 0g ‘ 𝐾 )  ↔  ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝐵  −  𝐶 ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 27 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  𝑃  ∈  ℙ ) | 
						
							| 28 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  𝑃  ∈  ℕ ) | 
						
							| 30 | 29 | nnzd | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  𝑃  ∈  ℤ ) | 
						
							| 31 |  | dvds0 | ⊢ ( 𝑃  ∈  ℤ  →  𝑃  ∥  0 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  𝑃  ∥  0 ) | 
						
							| 33 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  𝐵  ∈  ℂ ) | 
						
							| 34 | 33 | subidd | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  ( 𝐵  −  𝐵 )  =  0 ) | 
						
							| 35 | 34 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  0  =  ( 𝐵  −  𝐵 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  𝐵  =  𝐶 ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  ( 𝐵  −  𝐵 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 38 | 35 37 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  0  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 39 | 32 38 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐵  =  𝐶 )  →  𝑃  ∥  ( 𝐵  −  𝐶 ) ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝜑  →  ( 𝐵  =  𝐶  →  𝑃  ∥  ( 𝐵  −  𝐶 ) ) ) | 
						
							| 41 | 2 28 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  →  𝑃  ∈  ℕ ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  𝑃  ∈  ℕ ) | 
						
							| 44 |  | 1zzd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  1  ∈  ℤ ) | 
						
							| 45 | 43 | nnzd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  𝑃  ∈  ℤ ) | 
						
							| 46 | 45 44 | zsubcld | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 47 | 18 16 | zsubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  ∈  ℤ ) | 
						
							| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 𝐵  −  𝐶 )  ∈  ℤ ) | 
						
							| 49 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 50 | 49 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  1  =  ( 0  +  1 ) ) | 
						
							| 51 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  𝐶  <  𝐵 ) | 
						
							| 52 | 16 | zred | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  →  𝐶  ∈  ℝ ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  𝐶  ∈  ℝ ) | 
						
							| 55 | 18 | zred | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  →  𝐵  ∈  ℝ ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 58 | 54 57 | posdifd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 𝐶  <  𝐵  ↔  0  <  ( 𝐵  −  𝐶 ) ) ) | 
						
							| 59 | 51 58 | mpbid | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  0  <  ( 𝐵  −  𝐶 ) ) | 
						
							| 60 |  | 0zd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  0  ∈  ℤ ) | 
						
							| 61 | 60 48 | zltp1led | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 0  <  ( 𝐵  −  𝐶 )  ↔  ( 0  +  1 )  ≤  ( 𝐵  −  𝐶 ) ) ) | 
						
							| 62 | 59 61 | mpbid | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 0  +  1 )  ≤  ( 𝐵  −  𝐶 ) ) | 
						
							| 63 | 50 62 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  1  ≤  ( 𝐵  −  𝐶 ) ) | 
						
							| 64 | 48 | zred | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 𝐵  −  𝐶 )  ∈  ℝ ) | 
						
							| 65 | 43 | nnred | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  𝑃  ∈  ℝ ) | 
						
							| 66 |  | elfzle1 | ⊢ ( 𝐶  ∈  ( 0 ... 𝐴 )  →  0  ≤  𝐶 ) | 
						
							| 67 | 10 66 | syl | ⊢ ( 𝜑  →  0  ≤  𝐶 ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  →  0  ≤  𝐶 ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  0  ≤  𝐶 ) | 
						
							| 70 | 57 54 | subge02d | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 0  ≤  𝐶  ↔  ( 𝐵  −  𝐶 )  ≤  𝐵 ) ) | 
						
							| 71 | 69 70 | mpbid | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 𝐵  −  𝐶 )  ≤  𝐵 ) | 
						
							| 72 | 4 | nn0red | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 73 | 41 | nnred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 74 |  | elfzle2 | ⊢ ( 𝐵  ∈  ( 0 ... 𝐴 )  →  𝐵  ≤  𝐴 ) | 
						
							| 75 | 9 74 | syl | ⊢ ( 𝜑  →  𝐵  ≤  𝐴 ) | 
						
							| 76 | 55 72 73 75 5 | lelttrd | ⊢ ( 𝜑  →  𝐵  <  𝑃 ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  →  𝐵  <  𝑃 ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  𝐵  <  𝑃 ) | 
						
							| 79 | 64 57 65 71 78 | lelttrd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 𝐵  −  𝐶 )  <  𝑃 ) | 
						
							| 80 | 48 45 | zltlem1d | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( ( 𝐵  −  𝐶 )  <  𝑃  ↔  ( 𝐵  −  𝐶 )  ≤  ( 𝑃  −  1 ) ) ) | 
						
							| 81 | 79 80 | mpbid | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 𝐵  −  𝐶 )  ≤  ( 𝑃  −  1 ) ) | 
						
							| 82 | 44 46 48 63 81 | elfzd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ( 𝐵  −  𝐶 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 83 |  | fzm1ndvds | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( 𝐵  −  𝐶 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) )  →  ¬  𝑃  ∥  ( 𝐵  −  𝐶 ) ) | 
						
							| 84 | 43 82 83 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  𝐶  <  𝐵 )  →  ¬  𝑃  ∥  ( 𝐵  −  𝐶 ) ) | 
						
							| 85 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  ¬  𝐶  <  𝐵 )  →  𝜑 ) | 
						
							| 86 |  | axlttri | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵  <  𝐶  ↔  ¬  ( 𝐵  =  𝐶  ∨  𝐶  <  𝐵 ) ) ) | 
						
							| 87 | 55 52 86 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  <  𝐶  ↔  ¬  ( 𝐵  =  𝐶  ∨  𝐶  <  𝐵 ) ) ) | 
						
							| 88 |  | ioran | ⊢ ( ¬  ( 𝐵  =  𝐶  ∨  𝐶  <  𝐵 )  ↔  ( ¬  𝐵  =  𝐶  ∧  ¬  𝐶  <  𝐵 ) ) | 
						
							| 89 | 88 | a1i | ⊢ ( 𝜑  →  ( ¬  ( 𝐵  =  𝐶  ∨  𝐶  <  𝐵 )  ↔  ( ¬  𝐵  =  𝐶  ∧  ¬  𝐶  <  𝐵 ) ) ) | 
						
							| 90 | 87 89 | bitr2d | ⊢ ( 𝜑  →  ( ( ¬  𝐵  =  𝐶  ∧  ¬  𝐶  <  𝐵 )  ↔  𝐵  <  𝐶 ) ) | 
						
							| 91 | 90 | biimpd | ⊢ ( 𝜑  →  ( ( ¬  𝐵  =  𝐶  ∧  ¬  𝐶  <  𝐵 )  →  𝐵  <  𝐶 ) ) | 
						
							| 92 | 91 | imp | ⊢ ( ( 𝜑  ∧  ( ¬  𝐵  =  𝐶  ∧  ¬  𝐶  <  𝐵 ) )  →  𝐵  <  𝐶 ) | 
						
							| 93 | 92 | anassrs | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  ¬  𝐶  <  𝐵 )  →  𝐵  <  𝐶 ) | 
						
							| 94 | 85 93 | jca | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  ¬  𝐶  <  𝐵 )  →  ( 𝜑  ∧  𝐵  <  𝐶 ) ) | 
						
							| 95 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝑃  ∈  ℕ ) | 
						
							| 96 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  1  ∈  ℤ ) | 
						
							| 97 | 41 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 98 | 97 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝑃  ∈  ℤ ) | 
						
							| 99 | 98 96 | zsubcld | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 100 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝐶  ∈  ℤ ) | 
						
							| 101 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝐵  ∈  ℤ ) | 
						
							| 102 | 100 101 | zsubcld | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 𝐶  −  𝐵 )  ∈  ℤ ) | 
						
							| 103 | 49 | a1i | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  1  =  ( 0  +  1 ) ) | 
						
							| 104 | 55 52 | posdifd | ⊢ ( 𝜑  →  ( 𝐵  <  𝐶  ↔  0  <  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 105 | 104 | biimpd | ⊢ ( 𝜑  →  ( 𝐵  <  𝐶  →  0  <  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 106 | 105 | imp | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  0  <  ( 𝐶  −  𝐵 ) ) | 
						
							| 107 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  0  ∈  ℤ ) | 
						
							| 108 | 107 102 | zltp1led | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 0  <  ( 𝐶  −  𝐵 )  ↔  ( 0  +  1 )  ≤  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 109 | 106 108 | mpbid | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 0  +  1 )  ≤  ( 𝐶  −  𝐵 ) ) | 
						
							| 110 | 103 109 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  1  ≤  ( 𝐶  −  𝐵 ) ) | 
						
							| 111 | 102 | zred | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 𝐶  −  𝐵 )  ∈  ℝ ) | 
						
							| 112 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝐶  ∈  ℝ ) | 
						
							| 113 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝑃  ∈  ℝ ) | 
						
							| 114 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝐵  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 115 |  | elfzle1 | ⊢ ( 𝐵  ∈  ( 0 ... 𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 116 | 114 115 | syl | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  0  ≤  𝐵 ) | 
						
							| 117 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝐵  ∈  ℝ ) | 
						
							| 118 | 112 117 | subge02d | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 0  ≤  𝐵  ↔  ( 𝐶  −  𝐵 )  ≤  𝐶 ) ) | 
						
							| 119 | 116 118 | mpbid | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 𝐶  −  𝐵 )  ≤  𝐶 ) | 
						
							| 120 | 72 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝐴  ∈  ℝ ) | 
						
							| 121 |  | elfzle2 | ⊢ ( 𝐶  ∈  ( 0 ... 𝐴 )  →  𝐶  ≤  𝐴 ) | 
						
							| 122 | 10 121 | syl | ⊢ ( 𝜑  →  𝐶  ≤  𝐴 ) | 
						
							| 123 | 122 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝐶  ≤  𝐴 ) | 
						
							| 124 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝐴  <  𝑃 ) | 
						
							| 125 | 112 120 113 123 124 | lelttrd | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  𝐶  <  𝑃 ) | 
						
							| 126 | 111 112 113 119 125 | lelttrd | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 𝐶  −  𝐵 )  <  𝑃 ) | 
						
							| 127 | 102 98 | zltlem1d | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( ( 𝐶  −  𝐵 )  <  𝑃  ↔  ( 𝐶  −  𝐵 )  ≤  ( 𝑃  −  1 ) ) ) | 
						
							| 128 | 126 127 | mpbid | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 𝐶  −  𝐵 )  ≤  ( 𝑃  −  1 ) ) | 
						
							| 129 | 96 99 102 110 128 | elfzd | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 𝐶  −  𝐵 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 130 |  | fzm1ndvds | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( 𝐶  −  𝐵 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) )  →  ¬  𝑃  ∥  ( 𝐶  −  𝐵 ) ) | 
						
							| 131 | 95 129 130 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ¬  𝑃  ∥  ( 𝐶  −  𝐵 ) ) | 
						
							| 132 |  | dvdsnegb | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( 𝐵  −  𝐶 )  ∈  ℤ )  →  ( 𝑃  ∥  ( 𝐵  −  𝐶 )  ↔  𝑃  ∥  - ( 𝐵  −  𝐶 ) ) ) | 
						
							| 133 | 97 47 132 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( 𝐵  −  𝐶 )  ↔  𝑃  ∥  - ( 𝐵  −  𝐶 ) ) ) | 
						
							| 134 | 19 17 | negsubdi2d | ⊢ ( 𝜑  →  - ( 𝐵  −  𝐶 )  =  ( 𝐶  −  𝐵 ) ) | 
						
							| 135 | 134 | breq2d | ⊢ ( 𝜑  →  ( 𝑃  ∥  - ( 𝐵  −  𝐶 )  ↔  𝑃  ∥  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 136 | 133 135 | bitrd | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( 𝐵  −  𝐶 )  ↔  𝑃  ∥  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 137 | 136 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ( 𝑃  ∥  ( 𝐵  −  𝐶 )  ↔  𝑃  ∥  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 138 | 131 137 | mtbird | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐶 )  →  ¬  𝑃  ∥  ( 𝐵  −  𝐶 ) ) | 
						
							| 139 | 94 138 | syl | ⊢ ( ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  ∧  ¬  𝐶  <  𝐵 )  →  ¬  𝑃  ∥  ( 𝐵  −  𝐶 ) ) | 
						
							| 140 | 84 139 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ¬  𝐵  =  𝐶 )  →  ¬  𝑃  ∥  ( 𝐵  −  𝐶 ) ) | 
						
							| 141 | 140 | ex | ⊢ ( 𝜑  →  ( ¬  𝐵  =  𝐶  →  ¬  𝑃  ∥  ( 𝐵  −  𝐶 ) ) ) | 
						
							| 142 | 141 | con4d | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( 𝐵  −  𝐶 )  →  𝐵  =  𝐶 ) ) | 
						
							| 143 | 40 142 | impbid | ⊢ ( 𝜑  →  ( 𝐵  =  𝐶  ↔  𝑃  ∥  ( 𝐵  −  𝐶 ) ) ) | 
						
							| 144 | 1 | fldcrngd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 145 |  | crngring | ⊢ ( 𝐾  ∈  CRing  →  𝐾  ∈  Ring ) | 
						
							| 146 | 144 145 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 147 |  | eqid | ⊢ ( ℤRHom ‘ 𝐾 )  =  ( ℤRHom ‘ 𝐾 ) | 
						
							| 148 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 149 | 3 147 148 | chrdvds | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( 𝐵  −  𝐶 )  ∈  ℤ )  →  ( 𝑃  ∥  ( 𝐵  −  𝐶 )  ↔  ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝐵  −  𝐶 ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 150 | 146 47 149 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( 𝐵  −  𝐶 )  ↔  ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝐵  −  𝐶 ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 151 | 143 150 | bitr2d | ⊢ ( 𝜑  →  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝐵  −  𝐶 ) )  =  ( 0g ‘ 𝐾 )  ↔  𝐵  =  𝐶 ) ) | 
						
							| 152 | 26 151 | bitrd | ⊢ ( 𝜑  →  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝐶 ) ( +g ‘ ℤring ) 𝐵 ) )  =  ( 0g ‘ 𝐾 )  ↔  𝐵  =  𝐶 ) ) | 
						
							| 153 | 152 | bicomd | ⊢ ( 𝜑  →  ( 𝐵  =  𝐶  ↔  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝐶 ) ( +g ‘ ℤring ) 𝐵 ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 154 | 147 | zrhrhm | ⊢ ( 𝐾  ∈  Ring  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 ) ) | 
						
							| 155 |  | rhmghm | ⊢ ( ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 )  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  GrpHom  𝐾 ) ) | 
						
							| 156 | 154 155 | syl | ⊢ ( 𝐾  ∈  Ring  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  GrpHom  𝐾 ) ) | 
						
							| 157 | 146 156 | syl | ⊢ ( 𝜑  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  GrpHom  𝐾 ) ) | 
						
							| 158 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 159 | 158 16 | zsubcld | ⊢ ( 𝜑  →  ( 0  −  𝐶 )  ∈  ℤ ) | 
						
							| 160 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 161 | 159 160 | eleqtrdi | ⊢ ( 𝜑  →  ( 0  −  𝐶 )  ∈  ( Base ‘ ℤring ) ) | 
						
							| 162 | 18 160 | eleqtrdi | ⊢ ( 𝜑  →  𝐵  ∈  ( Base ‘ ℤring ) ) | 
						
							| 163 |  | eqid | ⊢ ( Base ‘ ℤring )  =  ( Base ‘ ℤring ) | 
						
							| 164 |  | eqid | ⊢ ( +g ‘ ℤring )  =  ( +g ‘ ℤring ) | 
						
							| 165 |  | eqid | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐾 ) | 
						
							| 166 | 163 164 165 | ghmlin | ⊢ ( ( ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  GrpHom  𝐾 )  ∧  ( 0  −  𝐶 )  ∈  ( Base ‘ ℤring )  ∧  𝐵  ∈  ( Base ‘ ℤring ) )  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝐶 ) ( +g ‘ ℤring ) 𝐵 ) )  =  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) | 
						
							| 167 | 157 161 162 166 | syl3anc | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝐶 ) ( +g ‘ ℤring ) 𝐵 ) )  =  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) | 
						
							| 168 | 167 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝐶 ) ( +g ‘ ℤring ) 𝐵 ) )  =  ( 0g ‘ 𝐾 )  ↔  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 169 | 153 168 | bitrd | ⊢ ( 𝜑  →  ( 𝐵  =  𝐶  ↔  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 170 |  | eqid | ⊢ ( eval1 ‘ 𝐾 )  =  ( eval1 ‘ 𝐾 ) | 
						
							| 171 |  | eqid | ⊢ ( Poly1 ‘ 𝐾 )  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 172 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 173 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 174 | 160 172 | ghmf | ⊢ ( ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  GrpHom  𝐾 )  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 175 | 157 174 | syl | ⊢ ( 𝜑  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 176 | 175 159 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 177 | 170 6 172 171 173 144 176 | evl1vard | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) )  =  ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) ) ) | 
						
							| 178 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) )  =  ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 179 | 175 18 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 180 | 170 171 172 178 173 144 179 176 | evl1scad | ⊢ ( 𝜑  →  ( ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) )  =  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) | 
						
							| 181 |  | eqid | ⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( +g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 182 | 170 171 172 173 144 176 177 180 181 165 | evl1addd | ⊢ ( 𝜑  →  ( ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) )  =  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) | 
						
							| 183 | 182 | simprd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) )  =  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) | 
						
							| 184 | 183 | eqcomd | ⊢ ( 𝜑  →  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) ) ) | 
						
							| 185 | 184 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) )  =  ( 0g ‘ 𝐾 )  ↔  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 186 | 169 185 | bitrd | ⊢ ( 𝜑  →  ( 𝐵  =  𝐶  ↔  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝐶 ) ) )  =  ( 0g ‘ 𝐾 ) ) ) |