| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1p5.1 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 2 |
|
aks6d1p5.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 3 |
|
aks6d1c5.3 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
| 4 |
|
aks6d1c5.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 5 |
|
aks6d1c5.5 |
⊢ ( 𝜑 → 𝐴 < 𝑃 ) |
| 6 |
|
aks6d1c5.6 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
| 7 |
|
aks6d1c5.7 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 8 |
|
aks6d1c5.8 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 9 |
|
aks6d1c5p1.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 ... 𝐴 ) ) |
| 10 |
|
aks6d1c5p1.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 ... 𝐴 ) ) |
| 11 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
| 12 |
11
|
eqcomi |
⊢ ( +g ‘ ℤring ) = + |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( +g ‘ ℤring ) = + ) |
| 14 |
13
|
oveqd |
⊢ ( 𝜑 → ( ( 0 − 𝐶 ) ( +g ‘ ℤring ) 𝐵 ) = ( ( 0 − 𝐶 ) + 𝐵 ) ) |
| 15 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 16 |
10
|
elfzelzd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
| 17 |
16
|
zcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 18 |
9
|
elfzelzd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 19 |
18
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 20 |
15 17 19
|
subadd23d |
⊢ ( 𝜑 → ( ( 0 − 𝐶 ) + 𝐵 ) = ( 0 + ( 𝐵 − 𝐶 ) ) ) |
| 21 |
19 17
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 22 |
21
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( 𝐵 − 𝐶 ) ) = ( 𝐵 − 𝐶 ) ) |
| 23 |
20 22
|
eqtrd |
⊢ ( 𝜑 → ( ( 0 − 𝐶 ) + 𝐵 ) = ( 𝐵 − 𝐶 ) ) |
| 24 |
14 23
|
eqtrd |
⊢ ( 𝜑 → ( ( 0 − 𝐶 ) ( +g ‘ ℤring ) 𝐵 ) = ( 𝐵 − 𝐶 ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝐶 ) ( +g ‘ ℤring ) 𝐵 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝐵 − 𝐶 ) ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝐶 ) ( +g ‘ ℤring ) 𝐵 ) ) = ( 0g ‘ 𝐾 ) ↔ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝐵 − 𝐶 ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 27 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑃 ∈ ℙ ) |
| 28 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑃 ∈ ℕ ) |
| 30 |
29
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑃 ∈ ℤ ) |
| 31 |
|
dvds0 |
⊢ ( 𝑃 ∈ ℤ → 𝑃 ∥ 0 ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑃 ∥ 0 ) |
| 33 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 ∈ ℂ ) |
| 34 |
33
|
subidd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐵 − 𝐵 ) = 0 ) |
| 35 |
34
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 0 = ( 𝐵 − 𝐵 ) ) |
| 36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 = 𝐶 ) |
| 37 |
36
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐵 − 𝐵 ) = ( 𝐵 − 𝐶 ) ) |
| 38 |
35 37
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 0 = ( 𝐵 − 𝐶 ) ) |
| 39 |
32 38
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝑃 ∥ ( 𝐵 − 𝐶 ) ) |
| 40 |
39
|
ex |
⊢ ( 𝜑 → ( 𝐵 = 𝐶 → 𝑃 ∥ ( 𝐵 − 𝐶 ) ) ) |
| 41 |
2 28
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) → 𝑃 ∈ ℕ ) |
| 43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 𝑃 ∈ ℕ ) |
| 44 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 1 ∈ ℤ ) |
| 45 |
43
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 𝑃 ∈ ℤ ) |
| 46 |
45 44
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 𝑃 − 1 ) ∈ ℤ ) |
| 47 |
18 16
|
zsubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) ∈ ℤ ) |
| 48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 𝐵 − 𝐶 ) ∈ ℤ ) |
| 49 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 50 |
49
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 1 = ( 0 + 1 ) ) |
| 51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 𝐶 < 𝐵 ) |
| 52 |
16
|
zred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) → 𝐶 ∈ ℝ ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 𝐶 ∈ ℝ ) |
| 55 |
18
|
zred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) → 𝐵 ∈ ℝ ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 58 |
54 57
|
posdifd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 𝐶 < 𝐵 ↔ 0 < ( 𝐵 − 𝐶 ) ) ) |
| 59 |
51 58
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 0 < ( 𝐵 − 𝐶 ) ) |
| 60 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 0 ∈ ℤ ) |
| 61 |
60 48
|
zltp1led |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 0 < ( 𝐵 − 𝐶 ) ↔ ( 0 + 1 ) ≤ ( 𝐵 − 𝐶 ) ) ) |
| 62 |
59 61
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 0 + 1 ) ≤ ( 𝐵 − 𝐶 ) ) |
| 63 |
50 62
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 1 ≤ ( 𝐵 − 𝐶 ) ) |
| 64 |
48
|
zred |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 𝐵 − 𝐶 ) ∈ ℝ ) |
| 65 |
43
|
nnred |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 𝑃 ∈ ℝ ) |
| 66 |
|
elfzle1 |
⊢ ( 𝐶 ∈ ( 0 ... 𝐴 ) → 0 ≤ 𝐶 ) |
| 67 |
10 66
|
syl |
⊢ ( 𝜑 → 0 ≤ 𝐶 ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) → 0 ≤ 𝐶 ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 0 ≤ 𝐶 ) |
| 70 |
57 54
|
subge02d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 0 ≤ 𝐶 ↔ ( 𝐵 − 𝐶 ) ≤ 𝐵 ) ) |
| 71 |
69 70
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 𝐵 − 𝐶 ) ≤ 𝐵 ) |
| 72 |
4
|
nn0red |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 73 |
41
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 74 |
|
elfzle2 |
⊢ ( 𝐵 ∈ ( 0 ... 𝐴 ) → 𝐵 ≤ 𝐴 ) |
| 75 |
9 74
|
syl |
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) |
| 76 |
55 72 73 75 5
|
lelttrd |
⊢ ( 𝜑 → 𝐵 < 𝑃 ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) → 𝐵 < 𝑃 ) |
| 78 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → 𝐵 < 𝑃 ) |
| 79 |
64 57 65 71 78
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 𝐵 − 𝐶 ) < 𝑃 ) |
| 80 |
48 45
|
zltlem1d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( ( 𝐵 − 𝐶 ) < 𝑃 ↔ ( 𝐵 − 𝐶 ) ≤ ( 𝑃 − 1 ) ) ) |
| 81 |
79 80
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 𝐵 − 𝐶 ) ≤ ( 𝑃 − 1 ) ) |
| 82 |
44 46 48 63 81
|
elfzd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ( 𝐵 − 𝐶 ) ∈ ( 1 ... ( 𝑃 − 1 ) ) ) |
| 83 |
|
fzm1ndvds |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝐵 − 𝐶 ) ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → ¬ 𝑃 ∥ ( 𝐵 − 𝐶 ) ) |
| 84 |
43 82 83
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ 𝐶 < 𝐵 ) → ¬ 𝑃 ∥ ( 𝐵 − 𝐶 ) ) |
| 85 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ ¬ 𝐶 < 𝐵 ) → 𝜑 ) |
| 86 |
|
axlttri |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 ↔ ¬ ( 𝐵 = 𝐶 ∨ 𝐶 < 𝐵 ) ) ) |
| 87 |
55 52 86
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 < 𝐶 ↔ ¬ ( 𝐵 = 𝐶 ∨ 𝐶 < 𝐵 ) ) ) |
| 88 |
|
ioran |
⊢ ( ¬ ( 𝐵 = 𝐶 ∨ 𝐶 < 𝐵 ) ↔ ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵 ) ) |
| 89 |
88
|
a1i |
⊢ ( 𝜑 → ( ¬ ( 𝐵 = 𝐶 ∨ 𝐶 < 𝐵 ) ↔ ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵 ) ) ) |
| 90 |
87 89
|
bitr2d |
⊢ ( 𝜑 → ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵 ) ↔ 𝐵 < 𝐶 ) ) |
| 91 |
90
|
biimpd |
⊢ ( 𝜑 → ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵 ) → 𝐵 < 𝐶 ) ) |
| 92 |
91
|
imp |
⊢ ( ( 𝜑 ∧ ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 < 𝐵 ) ) → 𝐵 < 𝐶 ) |
| 93 |
92
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ ¬ 𝐶 < 𝐵 ) → 𝐵 < 𝐶 ) |
| 94 |
85 93
|
jca |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ ¬ 𝐶 < 𝐵 ) → ( 𝜑 ∧ 𝐵 < 𝐶 ) ) |
| 95 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝑃 ∈ ℕ ) |
| 96 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 1 ∈ ℤ ) |
| 97 |
41
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝑃 ∈ ℤ ) |
| 99 |
98 96
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 𝑃 − 1 ) ∈ ℤ ) |
| 100 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ℤ ) |
| 101 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ℤ ) |
| 102 |
100 101
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 103 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 1 = ( 0 + 1 ) ) |
| 104 |
55 52
|
posdifd |
⊢ ( 𝜑 → ( 𝐵 < 𝐶 ↔ 0 < ( 𝐶 − 𝐵 ) ) ) |
| 105 |
104
|
biimpd |
⊢ ( 𝜑 → ( 𝐵 < 𝐶 → 0 < ( 𝐶 − 𝐵 ) ) ) |
| 106 |
105
|
imp |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 0 < ( 𝐶 − 𝐵 ) ) |
| 107 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 0 ∈ ℤ ) |
| 108 |
107 102
|
zltp1led |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 0 < ( 𝐶 − 𝐵 ) ↔ ( 0 + 1 ) ≤ ( 𝐶 − 𝐵 ) ) ) |
| 109 |
106 108
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 0 + 1 ) ≤ ( 𝐶 − 𝐵 ) ) |
| 110 |
103 109
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 1 ≤ ( 𝐶 − 𝐵 ) ) |
| 111 |
102
|
zred |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 112 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ℝ ) |
| 113 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝑃 ∈ ℝ ) |
| 114 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ( 0 ... 𝐴 ) ) |
| 115 |
|
elfzle1 |
⊢ ( 𝐵 ∈ ( 0 ... 𝐴 ) → 0 ≤ 𝐵 ) |
| 116 |
114 115
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 0 ≤ 𝐵 ) |
| 117 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ℝ ) |
| 118 |
112 117
|
subge02d |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 0 ≤ 𝐵 ↔ ( 𝐶 − 𝐵 ) ≤ 𝐶 ) ) |
| 119 |
116 118
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 𝐶 − 𝐵 ) ≤ 𝐶 ) |
| 120 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝐴 ∈ ℝ ) |
| 121 |
|
elfzle2 |
⊢ ( 𝐶 ∈ ( 0 ... 𝐴 ) → 𝐶 ≤ 𝐴 ) |
| 122 |
10 121
|
syl |
⊢ ( 𝜑 → 𝐶 ≤ 𝐴 ) |
| 123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝐶 ≤ 𝐴 ) |
| 124 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝑃 ) |
| 125 |
112 120 113 123 124
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → 𝐶 < 𝑃 ) |
| 126 |
111 112 113 119 125
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 𝐶 − 𝐵 ) < 𝑃 ) |
| 127 |
102 98
|
zltlem1d |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( ( 𝐶 − 𝐵 ) < 𝑃 ↔ ( 𝐶 − 𝐵 ) ≤ ( 𝑃 − 1 ) ) ) |
| 128 |
126 127
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 𝐶 − 𝐵 ) ≤ ( 𝑃 − 1 ) ) |
| 129 |
96 99 102 110 128
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 𝐶 − 𝐵 ) ∈ ( 1 ... ( 𝑃 − 1 ) ) ) |
| 130 |
|
fzm1ndvds |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝐶 − 𝐵 ) ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → ¬ 𝑃 ∥ ( 𝐶 − 𝐵 ) ) |
| 131 |
95 129 130
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ¬ 𝑃 ∥ ( 𝐶 − 𝐵 ) ) |
| 132 |
|
dvdsnegb |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝐵 − 𝐶 ) ∈ ℤ ) → ( 𝑃 ∥ ( 𝐵 − 𝐶 ) ↔ 𝑃 ∥ - ( 𝐵 − 𝐶 ) ) ) |
| 133 |
97 47 132
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( 𝐵 − 𝐶 ) ↔ 𝑃 ∥ - ( 𝐵 − 𝐶 ) ) ) |
| 134 |
19 17
|
negsubdi2d |
⊢ ( 𝜑 → - ( 𝐵 − 𝐶 ) = ( 𝐶 − 𝐵 ) ) |
| 135 |
134
|
breq2d |
⊢ ( 𝜑 → ( 𝑃 ∥ - ( 𝐵 − 𝐶 ) ↔ 𝑃 ∥ ( 𝐶 − 𝐵 ) ) ) |
| 136 |
133 135
|
bitrd |
⊢ ( 𝜑 → ( 𝑃 ∥ ( 𝐵 − 𝐶 ) ↔ 𝑃 ∥ ( 𝐶 − 𝐵 ) ) ) |
| 137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ( 𝑃 ∥ ( 𝐵 − 𝐶 ) ↔ 𝑃 ∥ ( 𝐶 − 𝐵 ) ) ) |
| 138 |
131 137
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐶 ) → ¬ 𝑃 ∥ ( 𝐵 − 𝐶 ) ) |
| 139 |
94 138
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) ∧ ¬ 𝐶 < 𝐵 ) → ¬ 𝑃 ∥ ( 𝐵 − 𝐶 ) ) |
| 140 |
84 139
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = 𝐶 ) → ¬ 𝑃 ∥ ( 𝐵 − 𝐶 ) ) |
| 141 |
140
|
ex |
⊢ ( 𝜑 → ( ¬ 𝐵 = 𝐶 → ¬ 𝑃 ∥ ( 𝐵 − 𝐶 ) ) ) |
| 142 |
141
|
con4d |
⊢ ( 𝜑 → ( 𝑃 ∥ ( 𝐵 − 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 143 |
40 142
|
impbid |
⊢ ( 𝜑 → ( 𝐵 = 𝐶 ↔ 𝑃 ∥ ( 𝐵 − 𝐶 ) ) ) |
| 144 |
1
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
| 145 |
|
crngring |
⊢ ( 𝐾 ∈ CRing → 𝐾 ∈ Ring ) |
| 146 |
144 145
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
| 147 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
| 148 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 149 |
3 147 148
|
chrdvds |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝐵 − 𝐶 ) ∈ ℤ ) → ( 𝑃 ∥ ( 𝐵 − 𝐶 ) ↔ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝐵 − 𝐶 ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 150 |
146 47 149
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( 𝐵 − 𝐶 ) ↔ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝐵 − 𝐶 ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 151 |
143 150
|
bitr2d |
⊢ ( 𝜑 → ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝐵 − 𝐶 ) ) = ( 0g ‘ 𝐾 ) ↔ 𝐵 = 𝐶 ) ) |
| 152 |
26 151
|
bitrd |
⊢ ( 𝜑 → ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝐶 ) ( +g ‘ ℤring ) 𝐵 ) ) = ( 0g ‘ 𝐾 ) ↔ 𝐵 = 𝐶 ) ) |
| 153 |
152
|
bicomd |
⊢ ( 𝜑 → ( 𝐵 = 𝐶 ↔ ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝐶 ) ( +g ‘ ℤring ) 𝐵 ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 154 |
147
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
| 155 |
|
rhmghm |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) ) |
| 156 |
154 155
|
syl |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) ) |
| 157 |
146 156
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) ) |
| 158 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 159 |
158 16
|
zsubcld |
⊢ ( 𝜑 → ( 0 − 𝐶 ) ∈ ℤ ) |
| 160 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 161 |
159 160
|
eleqtrdi |
⊢ ( 𝜑 → ( 0 − 𝐶 ) ∈ ( Base ‘ ℤring ) ) |
| 162 |
18 160
|
eleqtrdi |
⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ ℤring ) ) |
| 163 |
|
eqid |
⊢ ( Base ‘ ℤring ) = ( Base ‘ ℤring ) |
| 164 |
|
eqid |
⊢ ( +g ‘ ℤring ) = ( +g ‘ ℤring ) |
| 165 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
| 166 |
163 164 165
|
ghmlin |
⊢ ( ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) ∧ ( 0 − 𝐶 ) ∈ ( Base ‘ ℤring ) ∧ 𝐵 ∈ ( Base ‘ ℤring ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝐶 ) ( +g ‘ ℤring ) 𝐵 ) ) = ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) |
| 167 |
157 161 162 166
|
syl3anc |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝐶 ) ( +g ‘ ℤring ) 𝐵 ) ) = ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) |
| 168 |
167
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝐶 ) ( +g ‘ ℤring ) 𝐵 ) ) = ( 0g ‘ 𝐾 ) ↔ ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 169 |
153 168
|
bitrd |
⊢ ( 𝜑 → ( 𝐵 = 𝐶 ↔ ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 170 |
|
eqid |
⊢ ( eval1 ‘ 𝐾 ) = ( eval1 ‘ 𝐾 ) |
| 171 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
| 172 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 173 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
| 174 |
160 172
|
ghmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
| 175 |
157 174
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
| 176 |
175 159
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 177 |
170 6 172 171 173 144 176
|
evl1vard |
⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ) ) |
| 178 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) = ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) |
| 179 |
175 18
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ∈ ( Base ‘ 𝐾 ) ) |
| 180 |
170 171 172 178 173 144 179 176
|
evl1scad |
⊢ ( 𝜑 → ( ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) |
| 181 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ ( Poly1 ‘ 𝐾 ) ) |
| 182 |
170 171 172 173 144 176 177 180 181 165
|
evl1addd |
⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ) = ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) |
| 183 |
182
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ) = ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) |
| 184 |
183
|
eqcomd |
⊢ ( 𝜑 → ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ) ) |
| 185 |
184
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) = ( 0g ‘ 𝐾 ) ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 186 |
169 185
|
bitrd |
⊢ ( 𝜑 → ( 𝐵 = 𝐶 ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐵 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝐶 ) ) ) = ( 0g ‘ 𝐾 ) ) ) |