Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1p5.1 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
2 |
|
aks6d1p5.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
3 |
|
aks6d1c5.3 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
4 |
|
aks6d1c5.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
5 |
|
aks6d1c5.5 |
⊢ ( 𝜑 → 𝐴 < 𝑃 ) |
6 |
|
aks6d1c5.6 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
7 |
|
aks6d1c5.7 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
8 |
|
aks6d1c5.8 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
9 |
|
aks6d1c5p3.1 |
⊢ ( 𝜑 → 𝑌 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
10 |
|
aks6d1c5p3.2 |
⊢ ( 𝜑 → 𝑊 ∈ ( 0 ... 𝐴 ) ) |
11 |
|
aks6d1c5p3.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℕ0 ) |
12 |
|
aks6d1c5p3.4 |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑌 ‘ 𝑊 ) ) |
13 |
|
aks6d1c5p3.5 |
⊢ 𝑄 = ( quot1p ‘ 𝐾 ) |
14 |
|
aks6d1c5p3.6 |
⊢ 𝑆 = ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) |
15 |
|
aks6d1c5p3.7 |
⊢ 𝑀 = ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) |
16 |
1
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
17 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
18 |
17
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
19 |
16 18
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
20 |
|
crngring |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
22 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) = ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) |
23 |
22
|
ringmgp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ Ring → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
24 |
21 23
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
25 |
15 24
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
26 |
15
|
fveq2i |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
27 |
|
nn0ex |
⊢ ℕ0 ∈ V |
28 |
27
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
29 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ V ) |
30 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ ( 0 ... 𝐴 ) ∈ V ) → ( 𝑌 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
31 |
28 29 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
32 |
9 31
|
mpbid |
⊢ ( 𝜑 → 𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
33 |
32 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) ∈ ℕ0 ) |
34 |
33
|
nn0zd |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) ∈ ℤ ) |
35 |
11
|
nn0zd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
36 |
34 35
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ∈ ℤ ) |
37 |
33
|
nn0red |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) ∈ ℝ ) |
38 |
11
|
nn0red |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
39 |
37 38
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↔ 𝐶 ≤ ( 𝑌 ‘ 𝑊 ) ) ) |
40 |
12 39
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ) |
41 |
36 40
|
jca |
⊢ ( 𝜑 → ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ) ) |
42 |
|
elnn0z |
⊢ ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ∈ ℕ0 ↔ ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ) ) |
43 |
41 42
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ∈ ℕ0 ) |
44 |
21
|
ringcmnd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CMnd ) |
45 |
|
cmnmnd |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CMnd → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
47 |
|
crngring |
⊢ ( 𝐾 ∈ CRing → 𝐾 ∈ Ring ) |
48 |
16 47
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
49 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
50 |
6 17 49
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
51 |
48 50
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
52 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
53 |
52
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
54 |
48 53
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
55 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
56 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
57 |
55 56
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
58 |
54 57
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
59 |
10
|
elfzelzd |
⊢ ( 𝜑 → 𝑊 ∈ ℤ ) |
60 |
58 59
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
61 |
17 14 56 49
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
62 |
48 60 61
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
63 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ ( Poly1 ‘ 𝐾 ) ) |
64 |
49 63
|
mndcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
65 |
46 51 62 64
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
66 |
22 49
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
67 |
66
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
68 |
26 67
|
eqtri |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
69 |
65 68
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ( Base ‘ 𝑀 ) ) |
70 |
26 7 24 43 69
|
mulgnn0cld |
⊢ ( 𝜑 → ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ 𝑀 ) ) |
71 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
72 |
22
|
crngmgp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CRing → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
73 |
19 72
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
74 |
15 73
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
75 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ Fin ) |
76 |
|
diffi |
⊢ ( ( 0 ... 𝐴 ) ∈ Fin → ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∈ Fin ) |
77 |
75 76
|
syl |
⊢ ( 𝜑 → ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∈ Fin ) |
78 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
79 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
80 |
|
eldifi |
⊢ ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) → 𝑖 ∈ ( 0 ... 𝐴 ) ) |
81 |
80
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑖 ∈ ( 0 ... 𝐴 ) ) |
82 |
79 81
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑌 ‘ 𝑖 ) ∈ ℕ0 ) |
83 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
84 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
85 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝐾 ∈ Ring ) |
86 |
85 53 57
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
87 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝐴 ) → 𝑖 ∈ ℤ ) |
88 |
81 87
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑖 ∈ ℤ ) |
89 |
86 88
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) |
90 |
17 14 56 49
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
91 |
85 89 90
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
92 |
49 63
|
mndcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
93 |
83 84 91 92
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
94 |
93 68
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ 𝑀 ) ) |
95 |
26 7
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ∧ ( 𝑌 ‘ 𝑖 ) ∈ ℕ0 ∧ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ 𝑀 ) ) |
96 |
78 82 94 95
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ 𝑀 ) ) |
97 |
96
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ 𝑀 ) ) |
98 |
71 74 77 97
|
gsummptcl |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ 𝑀 ) ) |
99 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
100 |
71 99
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ 𝑀 ) ∧ ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ 𝑀 ) ) → ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∈ ( Base ‘ 𝑀 ) ) |
101 |
25 70 98 100
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∈ ( Base ‘ 𝑀 ) ) |
102 |
101 68
|
eleqtrdi |
⊢ ( 𝜑 → ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
103 |
71 99
|
cmncom |
⊢ ( ( 𝑀 ∈ CMnd ∧ ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ 𝑀 ) ∧ ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ 𝑀 ) ) → ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) = ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( +g ‘ 𝑀 ) ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
104 |
74 70 98 103
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) = ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( +g ‘ 𝑀 ) ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
105 |
104
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( +g ‘ 𝑀 ) ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
106 |
|
eqid |
⊢ ( .r ‘ ( Poly1 ‘ 𝐾 ) ) = ( .r ‘ ( Poly1 ‘ 𝐾 ) ) |
107 |
15 106
|
mgpplusg |
⊢ ( .r ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ 𝑀 ) |
108 |
107
|
eqcomi |
⊢ ( +g ‘ 𝑀 ) = ( .r ‘ ( Poly1 ‘ 𝐾 ) ) |
109 |
108
|
a1i |
⊢ ( 𝜑 → ( +g ‘ 𝑀 ) = ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ) |
110 |
109
|
oveqd |
⊢ ( 𝜑 → ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( +g ‘ 𝑀 ) ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
111 |
110
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( +g ‘ 𝑀 ) ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
112 |
98 68
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
113 |
70 68
|
eleqtrdi |
⊢ ( 𝜑 → ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
114 |
66 7 24 11 65
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
115 |
49 106 21 112 113 114
|
ringassd |
⊢ ( 𝜑 → ( ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) |
116 |
111 115
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( +g ‘ 𝑀 ) ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) |
117 |
105 116
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) |
118 |
117
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) = ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) ) |
119 |
37
|
recnd |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) ∈ ℂ ) |
120 |
38
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
121 |
119 120
|
npcand |
⊢ ( 𝜑 → ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) + 𝐶 ) = ( 𝑌 ‘ 𝑊 ) ) |
122 |
121
|
eqcomd |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) = ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) + 𝐶 ) ) |
123 |
122
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) = ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) + 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) |
124 |
66
|
a1i |
⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
125 |
65 124
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
126 |
43 11 125
|
3jca |
⊢ ( 𝜑 → ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ∧ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) ) |
127 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
128 |
22 106
|
mgpplusg |
⊢ ( .r ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
129 |
127 7 128
|
mulgnn0dir |
⊢ ( ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ∧ ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ∧ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) ) → ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) + 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) = ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
130 |
24 126 129
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) + 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) = ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
131 |
123 130
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) |
132 |
131
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) = ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
133 |
8
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
134 |
15
|
eqcomi |
⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) = 𝑀 |
135 |
134
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝑌 ) → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) = 𝑀 ) |
136 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝑌 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑔 = 𝑌 ) |
137 |
136
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝑌 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑔 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) |
138 |
14
|
eqcomi |
⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) = 𝑆 |
139 |
138
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝑌 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) = 𝑆 ) |
140 |
139
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝑌 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) = ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) |
141 |
140
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝑌 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) = ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) |
142 |
137 141
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝑌 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) = ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) |
143 |
142
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝑌 ) → ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
144 |
135 143
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝑌 ) → ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑀 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
145 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ V ) |
146 |
133 144 9 145
|
fvmptd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) = ( 𝑀 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
147 |
10
|
snssd |
⊢ ( 𝜑 → { 𝑊 } ⊆ ( 0 ... 𝐴 ) ) |
148 |
|
undifr |
⊢ ( { 𝑊 } ⊆ ( 0 ... 𝐴 ) ↔ ( ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∪ { 𝑊 } ) = ( 0 ... 𝐴 ) ) |
149 |
147 148
|
sylib |
⊢ ( 𝜑 → ( ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∪ { 𝑊 } ) = ( 0 ... 𝐴 ) ) |
150 |
149
|
eqcomd |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) = ( ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∪ { 𝑊 } ) ) |
151 |
150
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∪ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
152 |
151
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑀 Σg ( 𝑖 ∈ ( ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∪ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
153 |
146 152
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) = ( 𝑀 Σg ( 𝑖 ∈ ( ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∪ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
154 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝑊 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) |
155 |
26 7 24 33 69
|
mulgnn0cld |
⊢ ( 𝜑 → ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ 𝑀 ) ) |
156 |
|
fveq2 |
⊢ ( 𝑖 = 𝑊 → ( 𝑌 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑊 ) ) |
157 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑊 → ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) = ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
158 |
157
|
oveq2d |
⊢ ( 𝑖 = 𝑊 → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) = ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
159 |
156 158
|
oveq12d |
⊢ ( 𝑖 = 𝑊 → ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) = ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) |
160 |
71 107 74 77 96 10 154 155 159
|
gsumunsn |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑖 ∈ ( ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∪ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
161 |
153 160
|
eqtr2d |
⊢ ( 𝜑 → ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( 𝐺 ‘ 𝑌 ) ) |
162 |
132 161
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) = ( 𝐺 ‘ 𝑌 ) ) |
163 |
162
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) = ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑌 ) ) ) |
164 |
21
|
ringgrpd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
165 |
1 2 3 4 5 6 7 8
|
aks6d1c5lem0 |
⊢ ( 𝜑 → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
166 |
165 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
167 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) |
168 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ 𝐾 ) ) = ( -g ‘ ( Poly1 ‘ 𝐾 ) ) |
169 |
49 167 168
|
grpsubid |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Grp ∧ ( 𝐺 ‘ 𝑌 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑌 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
170 |
164 166 169
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑌 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
171 |
163 170
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
172 |
118 171
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
173 |
172
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
174 |
|
eqid |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ 𝐾 ) |
175 |
174 17 167
|
deg1z |
⊢ ( 𝐾 ∈ Ring → ( ( deg1 ‘ 𝐾 ) ‘ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) = -∞ ) |
176 |
48 175
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) = -∞ ) |
177 |
1
|
flddrngd |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
178 |
|
drngdomn |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ Domn ) |
179 |
177 178
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Domn ) |
180 |
17
|
ply1domn |
⊢ ( 𝐾 ∈ Domn → ( Poly1 ‘ 𝐾 ) ∈ Domn ) |
181 |
179 180
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Domn ) |
182 |
19 181
|
jca |
⊢ ( 𝜑 → ( ( Poly1 ‘ 𝐾 ) ∈ CRing ∧ ( Poly1 ‘ 𝐾 ) ∈ Domn ) ) |
183 |
|
isidom |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ IDomn ↔ ( ( Poly1 ‘ 𝐾 ) ∈ CRing ∧ ( Poly1 ‘ 𝐾 ) ∈ Domn ) ) |
184 |
182 183
|
sylibr |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ IDomn ) |
185 |
174 17 49
|
deg1xrcl |
⊢ ( ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ℝ* ) |
186 |
62 185
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ℝ* ) |
187 |
|
0xr |
⊢ 0 ∈ ℝ* |
188 |
187
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
189 |
174 17 49
|
deg1xrcl |
⊢ ( 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) ∈ ℝ* ) |
190 |
51 189
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) ∈ ℝ* ) |
191 |
174 17 56 14
|
deg1sclle |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ≤ 0 ) |
192 |
48 60 191
|
syl2anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ≤ 0 ) |
193 |
|
0lt1 |
⊢ 0 < 1 |
194 |
193
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
195 |
51 66
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
196 |
127 7
|
mulg1 |
⊢ ( 𝑋 ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( 1 ↑ 𝑋 ) = 𝑋 ) |
197 |
195 196
|
syl |
⊢ ( 𝜑 → ( 1 ↑ 𝑋 ) = 𝑋 ) |
198 |
197
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 1 ↑ 𝑋 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) ) |
199 |
|
isfld |
⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
200 |
199
|
biimpi |
⊢ ( 𝐾 ∈ Field → ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
201 |
1 200
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
202 |
201
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
203 |
|
drngnzr |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ NzRing ) |
204 |
202 203
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ NzRing ) |
205 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
206 |
205
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
207 |
174 17 6 22 7
|
deg1pw |
⊢ ( ( 𝐾 ∈ NzRing ∧ 1 ∈ ℕ0 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 1 ↑ 𝑋 ) ) = 1 ) |
208 |
204 206 207
|
syl2anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 1 ↑ 𝑋 ) ) = 1 ) |
209 |
198 208
|
eqtr3d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) = 1 ) |
210 |
209
|
eqcomd |
⊢ ( 𝜑 → 1 = ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) ) |
211 |
194 210
|
breqtrd |
⊢ ( 𝜑 → 0 < ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) ) |
212 |
186 188 190 192 211
|
xrlelttrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) ) |
213 |
17 174 48 49 63 51 62 212
|
deg1add |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) = ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) ) |
214 |
209 206
|
eqeltrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) ∈ ℕ0 ) |
215 |
213 214
|
eqeltrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ℕ0 ) |
216 |
174 17 167 49
|
deg1nn0clb |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ℕ0 ) ) |
217 |
48 65 216
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ℕ0 ) ) |
218 |
215 217
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
219 |
184 65 218 11 7
|
idomnnzpownz |
⊢ ( 𝜑 → ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
220 |
174 17 167 49
|
deg1nn0clb |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ∈ ℕ0 ) ) |
221 |
48 114 220
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ∈ ℕ0 ) ) |
222 |
219 221
|
mpbid |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ∈ ℕ0 ) |
223 |
222
|
nn0red |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ∈ ℝ ) |
224 |
223
|
mnfltd |
⊢ ( 𝜑 → -∞ < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
225 |
176 224
|
eqbrtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
226 |
173 225
|
eqbrtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
227 |
102 226
|
jca |
⊢ ( 𝜑 → ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) |
228 |
|
eqid |
⊢ ( Unic1p ‘ 𝐾 ) = ( Unic1p ‘ 𝐾 ) |
229 |
17 49 167 228
|
drnguc1p |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Unic1p ‘ 𝐾 ) ) |
230 |
177 114 219 229
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Unic1p ‘ 𝐾 ) ) |
231 |
13 17 49 174 168 106 228
|
q1peqb |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝐺 ‘ 𝑌 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Unic1p ‘ 𝐾 ) ) → ( ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ↔ ( ( 𝐺 ‘ 𝑌 ) 𝑄 ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
232 |
48 166 230 231
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑌 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ( .r ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) ↔ ( ( 𝐺 ‘ 𝑌 ) 𝑄 ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
233 |
227 232
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) 𝑄 ( 𝐶 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( ( ( 𝑌 ‘ 𝑊 ) − 𝐶 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝑆 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |