| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1p5.1 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 2 |  | aks6d1p5.2 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | aks6d1c5.3 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 4 |  | aks6d1c5.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 5 |  | aks6d1c5.5 | ⊢ ( 𝜑  →  𝐴  <  𝑃 ) | 
						
							| 6 |  | aks6d1c5.6 | ⊢ 𝑋  =  ( var1 ‘ 𝐾 ) | 
						
							| 7 |  | aks6d1c5.7 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 8 |  | aks6d1c5.8 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 9 |  | aks6d1c5p2.1 | ⊢ ( 𝜑  →  𝑌  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 10 |  | aks6d1c5p2.2 | ⊢ ( 𝜑  →  𝑍  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 11 |  | aks6d1c5p2.3 | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑌 )  =  ( 𝐺 ‘ 𝑍 ) ) | 
						
							| 12 |  | aks6d1c5p2.4 | ⊢ ( 𝜑  →  𝑊  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 13 |  | aks6d1c5p2.5 | ⊢ ( 𝜑  →  ( 𝑌 ‘ 𝑊 )  <  ( 𝑍 ‘ 𝑊 ) ) | 
						
							| 14 |  | eqid | ⊢ ( eval1 ‘ 𝐾 )  =  ( eval1 ‘ 𝐾 ) | 
						
							| 15 |  | eqid | ⊢ ( Poly1 ‘ 𝐾 )  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 18 |  | isfld | ⊢ ( 𝐾  ∈  Field  ↔  ( 𝐾  ∈  DivRing  ∧  𝐾  ∈  CRing ) ) | 
						
							| 19 | 18 | simprbi | ⊢ ( 𝐾  ∈  Field  →  𝐾  ∈  CRing ) | 
						
							| 20 | 1 19 | syl | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 21 | 20 | crngringd | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 22 |  | eqid | ⊢ ( ℤRHom ‘ 𝐾 )  =  ( ℤRHom ‘ 𝐾 ) | 
						
							| 23 | 22 | zrhrhm | ⊢ ( 𝐾  ∈  Ring  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 ) ) | 
						
							| 24 | 21 23 | syl | ⊢ ( 𝜑  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 ) ) | 
						
							| 25 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 26 | 25 16 | rhmf | ⊢ ( ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 )  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 27 | 24 26 | syl | ⊢ ( 𝜑  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 28 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 29 | 12 | elfzelzd | ⊢ ( 𝜑  →  𝑊  ∈  ℤ ) | 
						
							| 30 | 28 29 | zsubcld | ⊢ ( 𝜑  →  ( 0  −  𝑊 )  ∈  ℤ ) | 
						
							| 31 | 27 30 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 32 |  | eqid | ⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  =  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 33 | 32 17 | mgpbas | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 34 | 15 | ply1crng | ⊢ ( 𝐾  ∈  CRing  →  ( Poly1 ‘ 𝐾 )  ∈  CRing ) | 
						
							| 35 | 20 34 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  CRing ) | 
						
							| 36 | 32 | crngmgp | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  CRing  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  CMnd ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  CMnd ) | 
						
							| 38 | 37 | cmnmndd | ⊢ ( 𝜑  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  Mnd ) | 
						
							| 39 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 41 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ∈  V ) | 
						
							| 42 |  | elmapg | ⊢ ( ( ℕ0  ∈  V  ∧  ( 0 ... 𝐴 )  ∈  V )  →  ( 𝑌  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 43 | 40 41 42 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 44 | 9 43 | mpbid | ⊢ ( 𝜑  →  𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 45 | 44 12 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑌 ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 46 | 45 | nn0zd | ⊢ ( 𝜑  →  ( 𝑌 ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 47 | 46 46 | zsubcld | ⊢ ( 𝜑  →  ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℤ ) | 
						
							| 48 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 49 | 48 | leidd | ⊢ ( 𝜑  →  0  ≤  0 ) | 
						
							| 50 | 45 | nn0red | ⊢ ( 𝜑  →  ( 𝑌 ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 51 | 50 | recnd | ⊢ ( 𝜑  →  ( 𝑌 ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 52 | 51 | subidd | ⊢ ( 𝜑  →  ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  =  0 ) | 
						
							| 53 | 52 | eqcomd | ⊢ ( 𝜑  →  0  =  ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) | 
						
							| 54 | 49 53 | breqtrd | ⊢ ( 𝜑  →  0  ≤  ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) | 
						
							| 55 | 47 54 | jca | ⊢ ( 𝜑  →  ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℤ  ∧  0  ≤  ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) ) | 
						
							| 56 |  | elnn0z | ⊢ ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℕ0  ↔  ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℤ  ∧  0  ≤  ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) ) | 
						
							| 57 | 55 56 | sylibr | ⊢ ( 𝜑  →  ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℕ0 ) | 
						
							| 58 | 14 6 16 15 17 20 31 | evl1vard | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) | 
						
							| 59 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) )  =  ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 60 | 27 29 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 61 | 14 15 16 59 17 20 60 31 | evl1scad | ⊢ ( 𝜑  →  ( ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 62 |  | eqid | ⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( +g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 63 |  | eqid | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐾 ) | 
						
							| 64 | 14 15 16 17 20 31 58 61 62 63 | evl1addd | ⊢ ( 𝜑  →  ( ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 65 | 64 | simpld | ⊢ ( 𝜑  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 66 | 33 7 38 57 65 | mulgnn0cld | ⊢ ( 𝜑  →  ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 67 | 52 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  =  ( 0  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) | 
						
							| 68 |  | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 69 | 33 68 7 | mulg0 | ⊢ ( ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  →  ( 0  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  =  ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 70 | 65 69 | syl | ⊢ ( 𝜑  →  ( 0  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  =  ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 71 | 67 70 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  =  ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )  =  ( ( eval1 ‘ 𝐾 ) ‘ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) ) | 
						
							| 73 | 72 | fveq1d | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) | 
						
							| 74 |  | eqid | ⊢ ( 1r ‘ ( Poly1 ‘ 𝐾 ) )  =  ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 75 | 32 74 | ringidval | ⊢ ( 1r ‘ ( Poly1 ‘ 𝐾 ) )  =  ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 76 | 75 | eqcomi | ⊢ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 77 | 76 | a1i | ⊢ ( 𝜑  →  ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 78 | 77 | fveq2d | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) )  =  ( ( eval1 ‘ 𝐾 ) ‘ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 79 | 78 | fveq1d | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) | 
						
							| 80 | 15 6 32 7 | ply1idvr1 | ⊢ ( 𝐾  ∈  Ring  →  ( 0  ↑  𝑋 )  =  ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 81 | 80 | eqcomd | ⊢ ( 𝐾  ∈  Ring  →  ( 1r ‘ ( Poly1 ‘ 𝐾 ) )  =  ( 0  ↑  𝑋 ) ) | 
						
							| 82 | 21 81 | syl | ⊢ ( 𝜑  →  ( 1r ‘ ( Poly1 ‘ 𝐾 ) )  =  ( 0  ↑  𝑋 ) ) | 
						
							| 83 | 82 | fveq2d | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( ( eval1 ‘ 𝐾 ) ‘ ( 0  ↑  𝑋 ) ) ) | 
						
							| 84 | 83 | fveq1d | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0  ↑  𝑋 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) | 
						
							| 85 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( .g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 86 | 53 57 | eqeltrd | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 87 | 14 15 16 17 20 31 58 7 85 86 | evl1expd | ⊢ ( 𝜑  →  ( ( 0  ↑  𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0  ↑  𝑋 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 0 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) | 
						
							| 88 | 87 | simprd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0  ↑  𝑋 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 0 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) | 
						
							| 89 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 90 | 89 16 | mgpbas | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 91 | 90 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 92 | 31 91 | eleqtrd | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) )  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 93 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 94 |  | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 95 | 93 94 85 | mulg0 | ⊢ ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) )  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 96 | 92 95 | syl | ⊢ ( 𝜑  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 97 |  | eqid | ⊢ ( 1r ‘ 𝐾 )  =  ( 1r ‘ 𝐾 ) | 
						
							| 98 | 89 97 | ringidval | ⊢ ( 1r ‘ 𝐾 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 99 | 98 | eqcomi | ⊢ ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( 1r ‘ 𝐾 ) | 
						
							| 100 | 99 | a1i | ⊢ ( 𝜑  →  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 101 | 96 100 | eqtrd | ⊢ ( 𝜑  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 102 | 88 101 | eqtrd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0  ↑  𝑋 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 103 | 84 102 | eqtrd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 104 | 79 103 | eqtrd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 105 | 73 104 | eqtrd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 106 | 66 105 | jca | ⊢ ( 𝜑  →  ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 1r ‘ 𝐾 ) ) ) | 
						
							| 107 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ∈  Fin ) | 
						
							| 108 |  | diffi | ⊢ ( ( 0 ... 𝐴 )  ∈  Fin  →  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ∈  Fin ) | 
						
							| 109 | 107 108 | syl | ⊢ ( 𝜑  →  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ∈  Fin ) | 
						
							| 110 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  Mnd ) | 
						
							| 111 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 112 |  | eldifi | ⊢ ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  →  𝑖  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝑖  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 114 | 111 113 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( 𝑌 ‘ 𝑖 )  ∈  ℕ0 ) | 
						
							| 115 | 35 | crngringd | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Ring ) | 
						
							| 116 |  | ringcmn | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  Ring  →  ( Poly1 ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 117 | 115 116 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 118 |  | cmnmnd | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  CMnd  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 119 | 117 118 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 121 | 58 | simpld | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 123 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝐾  ∈  Ring ) | 
						
							| 124 | 123 23 26 | 3syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 125 | 113 | elfzelzd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝑖  ∈  ℤ ) | 
						
							| 126 | 124 125 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 127 | 15 59 16 17 | ply1sclcl | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 128 | 123 126 127 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 129 | 17 62 | mndcl | ⊢ ( ( ( Poly1 ‘ 𝐾 )  ∈  Mnd  ∧  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 130 | 120 122 128 129 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 131 | 33 7 110 114 130 | mulgnn0cld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 132 | 131 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 133 | 33 37 109 132 | gsummptcl | ⊢ ( 𝜑  →  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 134 | 132 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 135 | 134 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 136 | 14 15 32 16 17 89 20 31 135 109 | evl1gprodd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) ) | 
						
							| 137 | 133 136 | jca | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) ) ) | 
						
							| 138 |  | eqid | ⊢ ( .r ‘ ( Poly1 ‘ 𝐾 ) )  =  ( .r ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 139 | 32 138 | mgpplusg | ⊢ ( .r ‘ ( Poly1 ‘ 𝐾 ) )  =  ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 140 | 139 | eqcomi | ⊢ ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( .r ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 141 |  | eqid | ⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ 𝐾 ) | 
						
							| 142 | 14 15 16 17 20 31 106 137 140 141 | evl1muld | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( 1r ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) ) ) ) | 
						
							| 143 | 142 | simprd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( 1r ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) ) ) | 
						
							| 144 |  | fldidom | ⊢ ( 𝐾  ∈  Field  →  𝐾  ∈  IDomn ) | 
						
							| 145 | 1 144 | syl | ⊢ ( 𝜑  →  𝐾  ∈  IDomn ) | 
						
							| 146 |  | isidom | ⊢ ( 𝐾  ∈  IDomn  ↔  ( 𝐾  ∈  CRing  ∧  𝐾  ∈  Domn ) ) | 
						
							| 147 | 145 146 | sylib | ⊢ ( 𝜑  →  ( 𝐾  ∈  CRing  ∧  𝐾  ∈  Domn ) ) | 
						
							| 148 | 147 | simprd | ⊢ ( 𝜑  →  𝐾  ∈  Domn ) | 
						
							| 149 | 98 | a1i | ⊢ ( 𝜑  →  ( 1r ‘ 𝐾 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 150 | 89 | ringmgp | ⊢ ( 𝐾  ∈  Ring  →  ( mulGrp ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 151 | 21 150 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 152 | 90 94 | mndidcl | ⊢ ( ( mulGrp ‘ 𝐾 )  ∈  Mnd  →  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 153 | 151 152 | syl | ⊢ ( 𝜑  →  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 154 | 149 153 | eqeltrd | ⊢ ( 𝜑  →  ( 1r ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 155 | 1 | flddrngd | ⊢ ( 𝜑  →  𝐾  ∈  DivRing ) | 
						
							| 156 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 157 | 156 97 | drngunz | ⊢ ( 𝐾  ∈  DivRing  →  ( 1r ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 158 | 155 157 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 159 | 154 158 | jca | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 1r ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 160 | 89 | crngmgp | ⊢ ( 𝐾  ∈  CRing  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 161 | 20 160 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 162 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝐾  ∈  CRing ) | 
						
							| 163 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 164 | 14 15 16 17 162 163 131 | fveval1fvcl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 165 | 164 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 166 | 90 161 109 165 | gsummptcl | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 167 | 33 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 168 | 130 167 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 169 | 33 | eqcomi | ⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 170 | 169 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 171 | 168 170 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 172 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) | 
						
							| 173 | 171 172 | jca | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) | 
						
							| 174 | 14 15 16 17 162 163 173 7 85 114 | evl1expd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( 𝑌 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) ) | 
						
							| 175 | 174 | simprd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( 𝑌 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) | 
						
							| 176 | 145 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝐾  ∈  IDomn ) | 
						
							| 177 | 14 15 16 17 162 163 171 | fveval1fvcl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 178 |  | eldifsni | ⊢ ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  →  𝑖  ≠  𝑊 ) | 
						
							| 179 | 178 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝑖  ≠  𝑊 ) | 
						
							| 180 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝐾  ∈  Field ) | 
						
							| 181 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝑃  ∈  ℙ ) | 
						
							| 182 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 183 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝐴  <  𝑃 ) | 
						
							| 184 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝑊  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 185 | 180 181 3 182 183 6 7 8 113 184 | aks6d1c5lem1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( 𝑖  =  𝑊  ↔  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 186 | 185 | necon3bid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( 𝑖  ≠  𝑊  ↔  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  ≠  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 187 | 179 186 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 188 | 176 177 187 114 85 | idomnnzpownz | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( 𝑌 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 189 | 175 188 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 190 | 89 145 109 164 189 | idomnnzgmulnz | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 191 | 166 190 | jca | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) )  ≠  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 192 | 16 141 156 | domnmuln0 | ⊢ ( ( 𝐾  ∈  Domn  ∧  ( ( 1r ‘ 𝐾 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 1r ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) )  ∧  ( ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) )  ≠  ( 0g ‘ 𝐾 ) ) )  →  ( ( 1r ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 193 | 148 159 191 192 | syl3anc | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( mulGrp ‘ 𝐾 )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 194 | 143 193 | eqnetrd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 195 | 194 | necomd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐾 )  ≠  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) | 
						
							| 196 | 50 | leidd | ⊢ ( 𝜑  →  ( 𝑌 ‘ 𝑊 )  ≤  ( 𝑌 ‘ 𝑊 ) ) | 
						
							| 197 |  | eqid | ⊢ ( quot1p ‘ 𝐾 )  =  ( quot1p ‘ 𝐾 ) | 
						
							| 198 | 1 2 3 4 5 6 7 8 9 12 45 196 197 59 32 | aks6d1c5lem3 | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑌 ) ( quot1p ‘ 𝐾 ) ( ( 𝑌 ‘ 𝑊 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )  =  ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 199 | 198 | eqcomd | ⊢ ( 𝜑  →  ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )  =  ( ( 𝐺 ‘ 𝑌 ) ( quot1p ‘ 𝐾 ) ( ( 𝑌 ‘ 𝑊 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 200 | 11 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑌 ) ( quot1p ‘ 𝐾 ) ( ( 𝑌 ‘ 𝑊 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )  =  ( ( 𝐺 ‘ 𝑍 ) ( quot1p ‘ 𝐾 ) ( ( 𝑌 ‘ 𝑊 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 201 |  | elmapg | ⊢ ( ( ℕ0  ∈  V  ∧  ( 0 ... 𝐴 )  ∈  V )  →  ( 𝑍  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑍 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 202 | 40 41 201 | syl2anc | ⊢ ( 𝜑  →  ( 𝑍  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑍 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 203 | 10 202 | mpbid | ⊢ ( 𝜑  →  𝑍 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 204 | 203 12 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑍 ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 205 | 204 | nn0red | ⊢ ( 𝜑  →  ( 𝑍 ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 206 | 50 205 13 | ltled | ⊢ ( 𝜑  →  ( 𝑌 ‘ 𝑊 )  ≤  ( 𝑍 ‘ 𝑊 ) ) | 
						
							| 207 | 1 2 3 4 5 6 7 8 10 12 45 206 197 59 32 | aks6d1c5lem3 | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑍 ) ( quot1p ‘ 𝐾 ) ( ( 𝑌 ‘ 𝑊 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )  =  ( ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 208 | 199 200 207 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )  =  ( ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 209 | 208 | fveq2d | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) )  =  ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ) | 
						
							| 210 | 209 | fveq1d | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) | 
						
							| 211 | 204 | nn0zd | ⊢ ( 𝜑  →  ( 𝑍 ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 212 | 211 46 | zsubcld | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℤ ) | 
						
							| 213 | 205 50 | resubcld | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℝ ) | 
						
							| 214 | 50 205 | posdifd | ⊢ ( 𝜑  →  ( ( 𝑌 ‘ 𝑊 )  <  ( 𝑍 ‘ 𝑊 )  ↔  0  <  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) ) | 
						
							| 215 | 13 214 | mpbid | ⊢ ( 𝜑  →  0  <  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) | 
						
							| 216 | 48 213 215 | ltled | ⊢ ( 𝜑  →  0  ≤  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) | 
						
							| 217 | 212 216 | jca | ⊢ ( 𝜑  →  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℤ  ∧  0  ≤  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) ) | 
						
							| 218 |  | elnn0z | ⊢ ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℕ0  ↔  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℤ  ∧  0  ≤  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) ) | 
						
							| 219 | 217 218 | sylibr | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℕ0 ) | 
						
							| 220 | 14 15 16 17 20 31 64 7 85 219 | evl1expd | ⊢ ( 𝜑  →  ( ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) | 
						
							| 221 | 220 | simpld | ⊢ ( 𝜑  →  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 222 | 220 | simprd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 223 |  | rhmghm | ⊢ ( ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 )  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  GrpHom  𝐾 ) ) | 
						
							| 224 | 24 223 | syl | ⊢ ( 𝜑  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  GrpHom  𝐾 ) ) | 
						
							| 225 | 30 25 | eleqtrdi | ⊢ ( 𝜑  →  ( 0  −  𝑊 )  ∈  ( Base ‘ ℤring ) ) | 
						
							| 226 | 29 25 | eleqtrdi | ⊢ ( 𝜑  →  𝑊  ∈  ( Base ‘ ℤring ) ) | 
						
							| 227 |  | eqid | ⊢ ( Base ‘ ℤring )  =  ( Base ‘ ℤring ) | 
						
							| 228 |  | eqid | ⊢ ( +g ‘ ℤring )  =  ( +g ‘ ℤring ) | 
						
							| 229 | 227 228 63 | ghmlin | ⊢ ( ( ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  GrpHom  𝐾 )  ∧  ( 0  −  𝑊 )  ∈  ( Base ‘ ℤring )  ∧  𝑊  ∈  ( Base ‘ ℤring ) )  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝑊 ) ( +g ‘ ℤring ) 𝑊 ) )  =  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 230 | 224 225 226 229 | syl3anc | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝑊 ) ( +g ‘ ℤring ) 𝑊 ) )  =  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 231 |  | zringplusg | ⊢  +   =  ( +g ‘ ℤring ) | 
						
							| 232 | 231 | eqcomi | ⊢ ( +g ‘ ℤring )  =   + | 
						
							| 233 | 232 | a1i | ⊢ ( 𝜑  →  ( +g ‘ ℤring )  =   +  ) | 
						
							| 234 | 233 | oveqd | ⊢ ( 𝜑  →  ( ( 0  −  𝑊 ) ( +g ‘ ℤring ) 𝑊 )  =  ( ( 0  −  𝑊 )  +  𝑊 ) ) | 
						
							| 235 | 234 | fveq2d | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝑊 ) ( +g ‘ ℤring ) 𝑊 ) )  =  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝑊 )  +  𝑊 ) ) ) | 
						
							| 236 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 237 | 29 | zcnd | ⊢ ( 𝜑  →  𝑊  ∈  ℂ ) | 
						
							| 238 | 236 237 | npcand | ⊢ ( 𝜑  →  ( ( 0  −  𝑊 )  +  𝑊 )  =  0 ) | 
						
							| 239 | 238 | fveq2d | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝑊 )  +  𝑊 ) )  =  ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) | 
						
							| 240 | 235 239 | eqtrd | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝑊 ) ( +g ‘ ℤring ) 𝑊 ) )  =  ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) | 
						
							| 241 | 22 156 | zrh0 | ⊢ ( 𝐾  ∈  Ring  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 0 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 242 | 21 241 | syl | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 0 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 243 | 240 242 | eqtrd | ⊢ ( 𝜑  →  ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0  −  𝑊 ) ( +g ‘ ℤring ) 𝑊 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 244 | 230 243 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 245 | 244 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ 𝐾 ) ) ) | 
						
							| 246 | 219 | nn0zd | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℤ ) | 
						
							| 247 | 246 215 | jca | ⊢ ( 𝜑  →  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℤ  ∧  0  <  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) ) | 
						
							| 248 |  | elnnz | ⊢ ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℕ  ↔  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℤ  ∧  0  <  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ) ) | 
						
							| 249 | 247 248 | sylibr | ⊢ ( 𝜑  →  ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ∈  ℕ ) | 
						
							| 250 | 21 249 85 | ringexp0nn | ⊢ ( 𝜑  →  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ 𝐾 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 251 | 245 250 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 252 | 222 251 | eqtrd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 253 | 221 252 | jca | ⊢ ( 𝜑  →  ( ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 254 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 255 | 203 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  𝑍 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 256 | 255 113 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( 𝑍 ‘ 𝑖 )  ∈  ℕ0 ) | 
						
							| 257 | 254 7 110 256 168 | mulgnn0cld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 258 | 257 170 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) )  →  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 259 | 258 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } ) ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 260 | 33 37 109 259 | gsummptcl | ⊢ ( 𝜑  →  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 261 |  | eqidd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) | 
						
							| 262 | 260 261 | jca | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) | 
						
							| 263 | 14 15 16 17 20 31 253 262 140 141 | evl1muld | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( 0g ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) ) | 
						
							| 264 | 263 | simprd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( ( 0g ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) ) ) | 
						
							| 265 | 14 15 16 17 20 31 260 | fveval1fvcl | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 266 | 16 141 156 21 265 | ringlzd | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 267 | 264 266 | eqtrd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑍 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑍 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 268 | 210 267 | eqtrd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 )  −  ( 𝑌 ‘ 𝑊 ) )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( ( 0 ... 𝐴 )  ∖  { 𝑊 } )  ↦  ( ( 𝑌 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0  −  𝑊 ) ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 269 | 195 268 | neeqtrd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) |