| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1p5.1 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 2 |
|
aks6d1p5.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 3 |
|
aks6d1c5.3 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
| 4 |
|
aks6d1c5.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 5 |
|
aks6d1c5.5 |
⊢ ( 𝜑 → 𝐴 < 𝑃 ) |
| 6 |
|
aks6d1c5.6 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
| 7 |
|
aks6d1c5.7 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 8 |
|
aks6d1c5.8 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 9 |
|
aks6d1c5p2.1 |
⊢ ( 𝜑 → 𝑌 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 10 |
|
aks6d1c5p2.2 |
⊢ ( 𝜑 → 𝑍 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 11 |
|
aks6d1c5p2.3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑍 ) ) |
| 12 |
|
aks6d1c5p2.4 |
⊢ ( 𝜑 → 𝑊 ∈ ( 0 ... 𝐴 ) ) |
| 13 |
|
aks6d1c5p2.5 |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) < ( 𝑍 ‘ 𝑊 ) ) |
| 14 |
|
eqid |
⊢ ( eval1 ‘ 𝐾 ) = ( eval1 ‘ 𝐾 ) |
| 15 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
| 18 |
|
isfld |
⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
| 19 |
18
|
simprbi |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ CRing ) |
| 20 |
1 19
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
| 21 |
20
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
| 22 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
| 23 |
22
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
| 24 |
21 23
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
| 25 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 26 |
25 16
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
| 27 |
24 26
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
| 28 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 29 |
12
|
elfzelzd |
⊢ ( 𝜑 → 𝑊 ∈ ℤ ) |
| 30 |
28 29
|
zsubcld |
⊢ ( 𝜑 → ( 0 − 𝑊 ) ∈ ℤ ) |
| 31 |
27 30
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 32 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) = ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) |
| 33 |
32 17
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 34 |
15
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
| 35 |
20 34
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
| 36 |
32
|
crngmgp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CRing → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
| 38 |
37
|
cmnmndd |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
| 39 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 41 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ V ) |
| 42 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ ( 0 ... 𝐴 ) ∈ V ) → ( 𝑌 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
| 43 |
40 41 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
| 44 |
9 43
|
mpbid |
⊢ ( 𝜑 → 𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 45 |
44 12
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) ∈ ℕ0 ) |
| 46 |
45
|
nn0zd |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) ∈ ℤ ) |
| 47 |
46 46
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℤ ) |
| 48 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 49 |
48
|
leidd |
⊢ ( 𝜑 → 0 ≤ 0 ) |
| 50 |
45
|
nn0red |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) ∈ ℝ ) |
| 51 |
50
|
recnd |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) ∈ ℂ ) |
| 52 |
51
|
subidd |
⊢ ( 𝜑 → ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) = 0 ) |
| 53 |
52
|
eqcomd |
⊢ ( 𝜑 → 0 = ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) |
| 54 |
49 53
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) |
| 55 |
47 54
|
jca |
⊢ ( 𝜑 → ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℤ ∧ 0 ≤ ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) ) |
| 56 |
|
elnn0z |
⊢ ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℕ0 ↔ ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℤ ∧ 0 ≤ ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) ) |
| 57 |
55 56
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℕ0 ) |
| 58 |
14 6 16 15 17 20 31
|
evl1vard |
⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑋 ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) |
| 59 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) = ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) |
| 60 |
27 29
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 61 |
14 15 16 59 17 20 60 31
|
evl1scad |
⊢ ( 𝜑 → ( ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 62 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ ( Poly1 ‘ 𝐾 ) ) |
| 63 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
| 64 |
14 15 16 17 20 31 58 61 62 63
|
evl1addd |
⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 65 |
64
|
simpld |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 66 |
33 7 38 57 65
|
mulgnn0cld |
⊢ ( 𝜑 → ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 67 |
52
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) = ( 0 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) |
| 68 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 69 |
33 68 7
|
mulg0 |
⊢ ( ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( 0 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) = ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 70 |
65 69
|
syl |
⊢ ( 𝜑 → ( 0 ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) = ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 71 |
67 70
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) = ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 72 |
71
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) ) |
| 73 |
72
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) |
| 74 |
|
eqid |
⊢ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) = ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) |
| 75 |
32 74
|
ringidval |
⊢ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) = ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 76 |
75
|
eqcomi |
⊢ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) |
| 77 |
76
|
a1i |
⊢ ( 𝜑 → ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 78 |
77
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 79 |
78
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) |
| 80 |
15 6 32 7
|
ply1idvr1 |
⊢ ( 𝐾 ∈ Ring → ( 0 ↑ 𝑋 ) = ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 81 |
80
|
eqcomd |
⊢ ( 𝐾 ∈ Ring → ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) = ( 0 ↑ 𝑋 ) ) |
| 82 |
21 81
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) = ( 0 ↑ 𝑋 ) ) |
| 83 |
82
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 0 ↑ 𝑋 ) ) ) |
| 84 |
83
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0 ↑ 𝑋 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) |
| 85 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 86 |
53 57
|
eqeltrd |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 87 |
14 15 16 17 20 31 58 7 85 86
|
evl1expd |
⊢ ( 𝜑 → ( ( 0 ↑ 𝑋 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0 ↑ 𝑋 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) |
| 88 |
87
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0 ↑ 𝑋 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) |
| 89 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
| 90 |
89 16
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
| 91 |
90
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 92 |
31 91
|
eleqtrd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 93 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
| 94 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 95 |
93 94 85
|
mulg0 |
⊢ ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 96 |
92 95
|
syl |
⊢ ( 𝜑 → ( 0 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 97 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
| 98 |
89 97
|
ringidval |
⊢ ( 1r ‘ 𝐾 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 99 |
98
|
eqcomi |
⊢ ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) = ( 1r ‘ 𝐾 ) |
| 100 |
99
|
a1i |
⊢ ( 𝜑 → ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) = ( 1r ‘ 𝐾 ) ) |
| 101 |
96 100
|
eqtrd |
⊢ ( 𝜑 → ( 0 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 1r ‘ 𝐾 ) ) |
| 102 |
88 101
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0 ↑ 𝑋 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 1r ‘ 𝐾 ) ) |
| 103 |
84 102
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 1r ‘ ( Poly1 ‘ 𝐾 ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 1r ‘ 𝐾 ) ) |
| 104 |
79 103
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 1r ‘ 𝐾 ) ) |
| 105 |
73 104
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 1r ‘ 𝐾 ) ) |
| 106 |
66 105
|
jca |
⊢ ( 𝜑 → ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 1r ‘ 𝐾 ) ) ) |
| 107 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ Fin ) |
| 108 |
|
diffi |
⊢ ( ( 0 ... 𝐴 ) ∈ Fin → ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∈ Fin ) |
| 109 |
107 108
|
syl |
⊢ ( 𝜑 → ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ∈ Fin ) |
| 110 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
| 111 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑌 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 112 |
|
eldifi |
⊢ ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) → 𝑖 ∈ ( 0 ... 𝐴 ) ) |
| 113 |
112
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑖 ∈ ( 0 ... 𝐴 ) ) |
| 114 |
111 113
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑌 ‘ 𝑖 ) ∈ ℕ0 ) |
| 115 |
35
|
crngringd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
| 116 |
|
ringcmn |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ Ring → ( Poly1 ‘ 𝐾 ) ∈ CMnd ) |
| 117 |
115 116
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CMnd ) |
| 118 |
|
cmnmnd |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CMnd → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
| 119 |
117 118
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
| 120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
| 121 |
58
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 123 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝐾 ∈ Ring ) |
| 124 |
123 23 26
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
| 125 |
113
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑖 ∈ ℤ ) |
| 126 |
124 125
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) |
| 127 |
15 59 16 17
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 128 |
123 126 127
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 129 |
17 62
|
mndcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 130 |
120 122 128 129
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 131 |
33 7 110 114 130
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 132 |
131
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 133 |
33 37 109 132
|
gsummptcl |
⊢ ( 𝜑 → ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 134 |
132
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 135 |
134
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 136 |
14 15 32 16 17 89 20 31 135 109
|
evl1gprodd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ) |
| 137 |
133 136
|
jca |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ) ) |
| 138 |
|
eqid |
⊢ ( .r ‘ ( Poly1 ‘ 𝐾 ) ) = ( .r ‘ ( Poly1 ‘ 𝐾 ) ) |
| 139 |
32 138
|
mgpplusg |
⊢ ( .r ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 140 |
139
|
eqcomi |
⊢ ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( .r ‘ ( Poly1 ‘ 𝐾 ) ) |
| 141 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
| 142 |
14 15 16 17 20 31 106 137 140 141
|
evl1muld |
⊢ ( 𝜑 → ( ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( 1r ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ) ) ) |
| 143 |
142
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( 1r ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ) ) |
| 144 |
|
fldidom |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ IDomn ) |
| 145 |
1 144
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ IDomn ) |
| 146 |
|
isidom |
⊢ ( 𝐾 ∈ IDomn ↔ ( 𝐾 ∈ CRing ∧ 𝐾 ∈ Domn ) ) |
| 147 |
145 146
|
sylib |
⊢ ( 𝜑 → ( 𝐾 ∈ CRing ∧ 𝐾 ∈ Domn ) ) |
| 148 |
147
|
simprd |
⊢ ( 𝜑 → 𝐾 ∈ Domn ) |
| 149 |
98
|
a1i |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 150 |
89
|
ringmgp |
⊢ ( 𝐾 ∈ Ring → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
| 151 |
21 150
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
| 152 |
90 94
|
mndidcl |
⊢ ( ( mulGrp ‘ 𝐾 ) ∈ Mnd → ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 153 |
151 152
|
syl |
⊢ ( 𝜑 → ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 154 |
149 153
|
eqeltrd |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 155 |
1
|
flddrngd |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
| 156 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 157 |
156 97
|
drngunz |
⊢ ( 𝐾 ∈ DivRing → ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) |
| 158 |
155 157
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) |
| 159 |
154 158
|
jca |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) ) |
| 160 |
89
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
| 161 |
20 160
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
| 162 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝐾 ∈ CRing ) |
| 163 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 164 |
14 15 16 17 162 163 131
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 165 |
164
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 166 |
90 161 109 165
|
gsummptcl |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 167 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 168 |
130 167
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 169 |
33
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
| 170 |
169
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 171 |
168 170
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 172 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) |
| 173 |
171 172
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) |
| 174 |
14 15 16 17 162 163 173 7 85 114
|
evl1expd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( 𝑌 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ) |
| 175 |
174
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( 𝑌 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) |
| 176 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝐾 ∈ IDomn ) |
| 177 |
14 15 16 17 162 163 171
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 178 |
|
eldifsni |
⊢ ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) → 𝑖 ≠ 𝑊 ) |
| 179 |
178
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑖 ≠ 𝑊 ) |
| 180 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝐾 ∈ Field ) |
| 181 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑃 ∈ ℙ ) |
| 182 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝐴 ∈ ℕ0 ) |
| 183 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝐴 < 𝑃 ) |
| 184 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑊 ∈ ( 0 ... 𝐴 ) ) |
| 185 |
180 181 3 182 183 6 7 8 113 184
|
aks6d1c5lem1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑖 = 𝑊 ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 186 |
185
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑖 ≠ 𝑊 ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ≠ ( 0g ‘ 𝐾 ) ) ) |
| 187 |
179 186
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ≠ ( 0g ‘ 𝐾 ) ) |
| 188 |
176 177 187 114 85
|
idomnnzpownz |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( 𝑌 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ≠ ( 0g ‘ 𝐾 ) ) |
| 189 |
175 188
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ≠ ( 0g ‘ 𝐾 ) ) |
| 190 |
89 145 109 164 189
|
idomnnzgmulnz |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ≠ ( 0g ‘ 𝐾 ) ) |
| 191 |
166 190
|
jca |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ≠ ( 0g ‘ 𝐾 ) ) ) |
| 192 |
16 141 156
|
domnmuln0 |
⊢ ( ( 𝐾 ∈ Domn ∧ ( ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) ∧ ( ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ≠ ( 0g ‘ 𝐾 ) ) ) → ( ( 1r ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ) ≠ ( 0g ‘ 𝐾 ) ) |
| 193 |
148 159 191 192
|
syl3anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( mulGrp ‘ 𝐾 ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ) ≠ ( 0g ‘ 𝐾 ) ) |
| 194 |
143 193
|
eqnetrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ≠ ( 0g ‘ 𝐾 ) ) |
| 195 |
194
|
necomd |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) ≠ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) |
| 196 |
50
|
leidd |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) ≤ ( 𝑌 ‘ 𝑊 ) ) |
| 197 |
|
eqid |
⊢ ( quot1p ‘ 𝐾 ) = ( quot1p ‘ 𝐾 ) |
| 198 |
1 2 3 4 5 6 7 8 9 12 45 196 197 59 32
|
aks6d1c5lem3 |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) ( quot1p ‘ 𝐾 ) ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 199 |
198
|
eqcomd |
⊢ ( 𝜑 → ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) = ( ( 𝐺 ‘ 𝑌 ) ( quot1p ‘ 𝐾 ) ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
| 200 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) ( quot1p ‘ 𝐾 ) ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( 𝐺 ‘ 𝑍 ) ( quot1p ‘ 𝐾 ) ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ) |
| 201 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ ( 0 ... 𝐴 ) ∈ V ) → ( 𝑍 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑍 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
| 202 |
40 41 201
|
syl2anc |
⊢ ( 𝜑 → ( 𝑍 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑍 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
| 203 |
10 202
|
mpbid |
⊢ ( 𝜑 → 𝑍 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 204 |
203 12
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑍 ‘ 𝑊 ) ∈ ℕ0 ) |
| 205 |
204
|
nn0red |
⊢ ( 𝜑 → ( 𝑍 ‘ 𝑊 ) ∈ ℝ ) |
| 206 |
50 205 13
|
ltled |
⊢ ( 𝜑 → ( 𝑌 ‘ 𝑊 ) ≤ ( 𝑍 ‘ 𝑊 ) ) |
| 207 |
1 2 3 4 5 6 7 8 10 12 45 206 197 59 32
|
aks6d1c5lem3 |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑍 ) ( quot1p ‘ 𝐾 ) ( ( 𝑌 ‘ 𝑊 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) = ( ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 208 |
199 200 207
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) = ( ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 209 |
208
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 210 |
209
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) |
| 211 |
204
|
nn0zd |
⊢ ( 𝜑 → ( 𝑍 ‘ 𝑊 ) ∈ ℤ ) |
| 212 |
211 46
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℤ ) |
| 213 |
205 50
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℝ ) |
| 214 |
50 205
|
posdifd |
⊢ ( 𝜑 → ( ( 𝑌 ‘ 𝑊 ) < ( 𝑍 ‘ 𝑊 ) ↔ 0 < ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) ) |
| 215 |
13 214
|
mpbid |
⊢ ( 𝜑 → 0 < ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) |
| 216 |
48 213 215
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) |
| 217 |
212 216
|
jca |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℤ ∧ 0 ≤ ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) ) |
| 218 |
|
elnn0z |
⊢ ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℕ0 ↔ ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℤ ∧ 0 ≤ ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) ) |
| 219 |
217 218
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℕ0 ) |
| 220 |
14 15 16 17 20 31 64 7 85 219
|
evl1expd |
⊢ ( 𝜑 → ( ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) |
| 221 |
220
|
simpld |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 222 |
220
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 223 |
|
rhmghm |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) ) |
| 224 |
24 223
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) ) |
| 225 |
30 25
|
eleqtrdi |
⊢ ( 𝜑 → ( 0 − 𝑊 ) ∈ ( Base ‘ ℤring ) ) |
| 226 |
29 25
|
eleqtrdi |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ ℤring ) ) |
| 227 |
|
eqid |
⊢ ( Base ‘ ℤring ) = ( Base ‘ ℤring ) |
| 228 |
|
eqid |
⊢ ( +g ‘ ℤring ) = ( +g ‘ ℤring ) |
| 229 |
227 228 63
|
ghmlin |
⊢ ( ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) ∧ ( 0 − 𝑊 ) ∈ ( Base ‘ ℤring ) ∧ 𝑊 ∈ ( Base ‘ ℤring ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝑊 ) ( +g ‘ ℤring ) 𝑊 ) ) = ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 230 |
224 225 226 229
|
syl3anc |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝑊 ) ( +g ‘ ℤring ) 𝑊 ) ) = ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 231 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
| 232 |
231
|
eqcomi |
⊢ ( +g ‘ ℤring ) = + |
| 233 |
232
|
a1i |
⊢ ( 𝜑 → ( +g ‘ ℤring ) = + ) |
| 234 |
233
|
oveqd |
⊢ ( 𝜑 → ( ( 0 − 𝑊 ) ( +g ‘ ℤring ) 𝑊 ) = ( ( 0 − 𝑊 ) + 𝑊 ) ) |
| 235 |
234
|
fveq2d |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝑊 ) ( +g ‘ ℤring ) 𝑊 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝑊 ) + 𝑊 ) ) ) |
| 236 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 237 |
29
|
zcnd |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
| 238 |
236 237
|
npcand |
⊢ ( 𝜑 → ( ( 0 − 𝑊 ) + 𝑊 ) = 0 ) |
| 239 |
238
|
fveq2d |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝑊 ) + 𝑊 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) |
| 240 |
235 239
|
eqtrd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝑊 ) ( +g ‘ ℤring ) 𝑊 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) |
| 241 |
22 156
|
zrh0 |
⊢ ( 𝐾 ∈ Ring → ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) = ( 0g ‘ 𝐾 ) ) |
| 242 |
21 241
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) = ( 0g ‘ 𝐾 ) ) |
| 243 |
240 242
|
eqtrd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ ( ( 0 − 𝑊 ) ( +g ‘ ℤring ) 𝑊 ) ) = ( 0g ‘ 𝐾 ) ) |
| 244 |
230 243
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ 𝐾 ) ) |
| 245 |
244
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ 𝐾 ) ) ) |
| 246 |
219
|
nn0zd |
⊢ ( 𝜑 → ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℤ ) |
| 247 |
246 215
|
jca |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℤ ∧ 0 < ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) ) |
| 248 |
|
elnnz |
⊢ ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℕ ↔ ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℤ ∧ 0 < ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ) ) |
| 249 |
247 248
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ∈ ℕ ) |
| 250 |
21 249 85
|
ringexp0nn |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝐾 ) ) |
| 251 |
245 250
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( 0g ‘ 𝐾 ) ) |
| 252 |
222 251
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 0g ‘ 𝐾 ) ) |
| 253 |
221 252
|
jca |
⊢ ( 𝜑 → ( ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 0g ‘ 𝐾 ) ) ) |
| 254 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 255 |
203
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → 𝑍 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 256 |
255 113
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( 𝑍 ‘ 𝑖 ) ∈ ℕ0 ) |
| 257 |
254 7 110 256 168
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
| 258 |
257 170
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ) → ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 259 |
258
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 260 |
33 37 109 259
|
gsummptcl |
⊢ ( 𝜑 → ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 261 |
|
eqidd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) |
| 262 |
260 261
|
jca |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) |
| 263 |
14 15 16 17 20 31 253 262 140 141
|
evl1muld |
⊢ ( 𝜑 → ( ( ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( 0g ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) ) |
| 264 |
263
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( ( 0g ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) ) |
| 265 |
14 15 16 17 20 31 260
|
fveval1fvcl |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 266 |
16 141 156 21 265
|
ringlzd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝐾 ) ( .r ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) ) = ( 0g ‘ 𝐾 ) ) |
| 267 |
264 266
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑍 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑍 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 0g ‘ 𝐾 ) ) |
| 268 |
210 267
|
eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( ( ( 𝑌 ‘ 𝑊 ) − ( 𝑌 ‘ 𝑊 ) ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( ( 0 ... 𝐴 ) ∖ { 𝑊 } ) ↦ ( ( 𝑌 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 0 − 𝑊 ) ) ) = ( 0g ‘ 𝐾 ) ) |
| 269 |
195 268
|
neeqtrd |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) |