| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1p5.1 |
|- ( ph -> K e. Field ) |
| 2 |
|
aks6d1p5.2 |
|- ( ph -> P e. Prime ) |
| 3 |
|
aks6d1c5.3 |
|- P = ( chr ` K ) |
| 4 |
|
aks6d1c5.4 |
|- ( ph -> A e. NN0 ) |
| 5 |
|
aks6d1c5.5 |
|- ( ph -> A < P ) |
| 6 |
|
aks6d1c5.6 |
|- X = ( var1 ` K ) |
| 7 |
|
aks6d1c5.7 |
|- .^ = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 8 |
|
aks6d1c5.8 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
| 9 |
|
aks6d1c5p2.1 |
|- ( ph -> Y e. ( NN0 ^m ( 0 ... A ) ) ) |
| 10 |
|
aks6d1c5p2.2 |
|- ( ph -> Z e. ( NN0 ^m ( 0 ... A ) ) ) |
| 11 |
|
aks6d1c5p2.3 |
|- ( ph -> ( G ` Y ) = ( G ` Z ) ) |
| 12 |
|
aks6d1c5p2.4 |
|- ( ph -> W e. ( 0 ... A ) ) |
| 13 |
|
aks6d1c5p2.5 |
|- ( ph -> ( Y ` W ) < ( Z ` W ) ) |
| 14 |
|
eqid |
|- ( eval1 ` K ) = ( eval1 ` K ) |
| 15 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
| 16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 17 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
| 18 |
|
isfld |
|- ( K e. Field <-> ( K e. DivRing /\ K e. CRing ) ) |
| 19 |
18
|
simprbi |
|- ( K e. Field -> K e. CRing ) |
| 20 |
1 19
|
syl |
|- ( ph -> K e. CRing ) |
| 21 |
20
|
crngringd |
|- ( ph -> K e. Ring ) |
| 22 |
|
eqid |
|- ( ZRHom ` K ) = ( ZRHom ` K ) |
| 23 |
22
|
zrhrhm |
|- ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
| 24 |
21 23
|
syl |
|- ( ph -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
| 25 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 26 |
25 16
|
rhmf |
|- ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 27 |
24 26
|
syl |
|- ( ph -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 28 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 29 |
12
|
elfzelzd |
|- ( ph -> W e. ZZ ) |
| 30 |
28 29
|
zsubcld |
|- ( ph -> ( 0 - W ) e. ZZ ) |
| 31 |
27 30
|
ffvelcdmd |
|- ( ph -> ( ( ZRHom ` K ) ` ( 0 - W ) ) e. ( Base ` K ) ) |
| 32 |
|
eqid |
|- ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) |
| 33 |
32 17
|
mgpbas |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 34 |
15
|
ply1crng |
|- ( K e. CRing -> ( Poly1 ` K ) e. CRing ) |
| 35 |
20 34
|
syl |
|- ( ph -> ( Poly1 ` K ) e. CRing ) |
| 36 |
32
|
crngmgp |
|- ( ( Poly1 ` K ) e. CRing -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) |
| 37 |
35 36
|
syl |
|- ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) |
| 38 |
37
|
cmnmndd |
|- ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
| 39 |
|
nn0ex |
|- NN0 e. _V |
| 40 |
39
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 41 |
|
ovexd |
|- ( ph -> ( 0 ... A ) e. _V ) |
| 42 |
|
elmapg |
|- ( ( NN0 e. _V /\ ( 0 ... A ) e. _V ) -> ( Y e. ( NN0 ^m ( 0 ... A ) ) <-> Y : ( 0 ... A ) --> NN0 ) ) |
| 43 |
40 41 42
|
syl2anc |
|- ( ph -> ( Y e. ( NN0 ^m ( 0 ... A ) ) <-> Y : ( 0 ... A ) --> NN0 ) ) |
| 44 |
9 43
|
mpbid |
|- ( ph -> Y : ( 0 ... A ) --> NN0 ) |
| 45 |
44 12
|
ffvelcdmd |
|- ( ph -> ( Y ` W ) e. NN0 ) |
| 46 |
45
|
nn0zd |
|- ( ph -> ( Y ` W ) e. ZZ ) |
| 47 |
46 46
|
zsubcld |
|- ( ph -> ( ( Y ` W ) - ( Y ` W ) ) e. ZZ ) |
| 48 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 49 |
48
|
leidd |
|- ( ph -> 0 <_ 0 ) |
| 50 |
45
|
nn0red |
|- ( ph -> ( Y ` W ) e. RR ) |
| 51 |
50
|
recnd |
|- ( ph -> ( Y ` W ) e. CC ) |
| 52 |
51
|
subidd |
|- ( ph -> ( ( Y ` W ) - ( Y ` W ) ) = 0 ) |
| 53 |
52
|
eqcomd |
|- ( ph -> 0 = ( ( Y ` W ) - ( Y ` W ) ) ) |
| 54 |
49 53
|
breqtrd |
|- ( ph -> 0 <_ ( ( Y ` W ) - ( Y ` W ) ) ) |
| 55 |
47 54
|
jca |
|- ( ph -> ( ( ( Y ` W ) - ( Y ` W ) ) e. ZZ /\ 0 <_ ( ( Y ` W ) - ( Y ` W ) ) ) ) |
| 56 |
|
elnn0z |
|- ( ( ( Y ` W ) - ( Y ` W ) ) e. NN0 <-> ( ( ( Y ` W ) - ( Y ` W ) ) e. ZZ /\ 0 <_ ( ( Y ` W ) - ( Y ` W ) ) ) ) |
| 57 |
55 56
|
sylibr |
|- ( ph -> ( ( Y ` W ) - ( Y ` W ) ) e. NN0 ) |
| 58 |
14 6 16 15 17 20 31
|
evl1vard |
|- ( ph -> ( X e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` X ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) |
| 59 |
|
eqid |
|- ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) |
| 60 |
27 29
|
ffvelcdmd |
|- ( ph -> ( ( ZRHom ` K ) ` W ) e. ( Base ` K ) ) |
| 61 |
14 15 16 59 17 20 60 31
|
evl1scad |
|- ( ph -> ( ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ZRHom ` K ) ` W ) ) ) |
| 62 |
|
eqid |
|- ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) |
| 63 |
|
eqid |
|- ( +g ` K ) = ( +g ` K ) |
| 64 |
14 15 16 17 20 31 58 61 62 63
|
evl1addd |
|- ( ph -> ( ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( ZRHom ` K ) ` ( 0 - W ) ) ( +g ` K ) ( ( ZRHom ` K ) ` W ) ) ) ) |
| 65 |
64
|
simpld |
|- ( ph -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 66 |
33 7 38 57 65
|
mulgnn0cld |
|- ( ph -> ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 67 |
52
|
oveq1d |
|- ( ph -> ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) = ( 0 .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) |
| 68 |
|
eqid |
|- ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 69 |
33 68 7
|
mulg0 |
|- ( ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) e. ( Base ` ( Poly1 ` K ) ) -> ( 0 .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) = ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 70 |
65 69
|
syl |
|- ( ph -> ( 0 .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) = ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 71 |
67 70
|
eqtrd |
|- ( ph -> ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) = ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 72 |
71
|
fveq2d |
|- ( ph -> ( ( eval1 ` K ) ` ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) = ( ( eval1 ` K ) ` ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) ) ) |
| 73 |
72
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( eval1 ` K ) ` ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) |
| 74 |
|
eqid |
|- ( 1r ` ( Poly1 ` K ) ) = ( 1r ` ( Poly1 ` K ) ) |
| 75 |
32 74
|
ringidval |
|- ( 1r ` ( Poly1 ` K ) ) = ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 76 |
75
|
eqcomi |
|- ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( 1r ` ( Poly1 ` K ) ) |
| 77 |
76
|
a1i |
|- ( ph -> ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( 1r ` ( Poly1 ` K ) ) ) |
| 78 |
77
|
fveq2d |
|- ( ph -> ( ( eval1 ` K ) ` ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) ) = ( ( eval1 ` K ) ` ( 1r ` ( Poly1 ` K ) ) ) ) |
| 79 |
78
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` K ) ` ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( eval1 ` K ) ` ( 1r ` ( Poly1 ` K ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) |
| 80 |
15 6 32 7
|
ply1idvr1 |
|- ( K e. Ring -> ( 0 .^ X ) = ( 1r ` ( Poly1 ` K ) ) ) |
| 81 |
80
|
eqcomd |
|- ( K e. Ring -> ( 1r ` ( Poly1 ` K ) ) = ( 0 .^ X ) ) |
| 82 |
21 81
|
syl |
|- ( ph -> ( 1r ` ( Poly1 ` K ) ) = ( 0 .^ X ) ) |
| 83 |
82
|
fveq2d |
|- ( ph -> ( ( eval1 ` K ) ` ( 1r ` ( Poly1 ` K ) ) ) = ( ( eval1 ` K ) ` ( 0 .^ X ) ) ) |
| 84 |
83
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` K ) ` ( 1r ` ( Poly1 ` K ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( eval1 ` K ) ` ( 0 .^ X ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) |
| 85 |
|
eqid |
|- ( .g ` ( mulGrp ` K ) ) = ( .g ` ( mulGrp ` K ) ) |
| 86 |
53 57
|
eqeltrd |
|- ( ph -> 0 e. NN0 ) |
| 87 |
14 15 16 17 20 31 58 7 85 86
|
evl1expd |
|- ( ph -> ( ( 0 .^ X ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( 0 .^ X ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 0 ( .g ` ( mulGrp ` K ) ) ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) |
| 88 |
87
|
simprd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( 0 .^ X ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 0 ( .g ` ( mulGrp ` K ) ) ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) |
| 89 |
|
eqid |
|- ( mulGrp ` K ) = ( mulGrp ` K ) |
| 90 |
89 16
|
mgpbas |
|- ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) |
| 91 |
90
|
a1i |
|- ( ph -> ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) ) |
| 92 |
31 91
|
eleqtrd |
|- ( ph -> ( ( ZRHom ` K ) ` ( 0 - W ) ) e. ( Base ` ( mulGrp ` K ) ) ) |
| 93 |
|
eqid |
|- ( Base ` ( mulGrp ` K ) ) = ( Base ` ( mulGrp ` K ) ) |
| 94 |
|
eqid |
|- ( 0g ` ( mulGrp ` K ) ) = ( 0g ` ( mulGrp ` K ) ) |
| 95 |
93 94 85
|
mulg0 |
|- ( ( ( ZRHom ` K ) ` ( 0 - W ) ) e. ( Base ` ( mulGrp ` K ) ) -> ( 0 ( .g ` ( mulGrp ` K ) ) ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 0g ` ( mulGrp ` K ) ) ) |
| 96 |
92 95
|
syl |
|- ( ph -> ( 0 ( .g ` ( mulGrp ` K ) ) ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 0g ` ( mulGrp ` K ) ) ) |
| 97 |
|
eqid |
|- ( 1r ` K ) = ( 1r ` K ) |
| 98 |
89 97
|
ringidval |
|- ( 1r ` K ) = ( 0g ` ( mulGrp ` K ) ) |
| 99 |
98
|
eqcomi |
|- ( 0g ` ( mulGrp ` K ) ) = ( 1r ` K ) |
| 100 |
99
|
a1i |
|- ( ph -> ( 0g ` ( mulGrp ` K ) ) = ( 1r ` K ) ) |
| 101 |
96 100
|
eqtrd |
|- ( ph -> ( 0 ( .g ` ( mulGrp ` K ) ) ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 1r ` K ) ) |
| 102 |
88 101
|
eqtrd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( 0 .^ X ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 1r ` K ) ) |
| 103 |
84 102
|
eqtrd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( 1r ` ( Poly1 ` K ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 1r ` K ) ) |
| 104 |
79 103
|
eqtrd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( 0g ` ( mulGrp ` ( Poly1 ` K ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 1r ` K ) ) |
| 105 |
73 104
|
eqtrd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 1r ` K ) ) |
| 106 |
66 105
|
jca |
|- ( ph -> ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 1r ` K ) ) ) |
| 107 |
|
fzfid |
|- ( ph -> ( 0 ... A ) e. Fin ) |
| 108 |
|
diffi |
|- ( ( 0 ... A ) e. Fin -> ( ( 0 ... A ) \ { W } ) e. Fin ) |
| 109 |
107 108
|
syl |
|- ( ph -> ( ( 0 ... A ) \ { W } ) e. Fin ) |
| 110 |
38
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
| 111 |
44
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> Y : ( 0 ... A ) --> NN0 ) |
| 112 |
|
eldifi |
|- ( i e. ( ( 0 ... A ) \ { W } ) -> i e. ( 0 ... A ) ) |
| 113 |
112
|
adantl |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> i e. ( 0 ... A ) ) |
| 114 |
111 113
|
ffvelcdmd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( Y ` i ) e. NN0 ) |
| 115 |
35
|
crngringd |
|- ( ph -> ( Poly1 ` K ) e. Ring ) |
| 116 |
|
ringcmn |
|- ( ( Poly1 ` K ) e. Ring -> ( Poly1 ` K ) e. CMnd ) |
| 117 |
115 116
|
syl |
|- ( ph -> ( Poly1 ` K ) e. CMnd ) |
| 118 |
|
cmnmnd |
|- ( ( Poly1 ` K ) e. CMnd -> ( Poly1 ` K ) e. Mnd ) |
| 119 |
117 118
|
syl |
|- ( ph -> ( Poly1 ` K ) e. Mnd ) |
| 120 |
119
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( Poly1 ` K ) e. Mnd ) |
| 121 |
58
|
simpld |
|- ( ph -> X e. ( Base ` ( Poly1 ` K ) ) ) |
| 122 |
121
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> X e. ( Base ` ( Poly1 ` K ) ) ) |
| 123 |
21
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> K e. Ring ) |
| 124 |
123 23 26
|
3syl |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 125 |
113
|
elfzelzd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> i e. ZZ ) |
| 126 |
124 125
|
ffvelcdmd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) |
| 127 |
15 59 16 17
|
ply1sclcl |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 128 |
123 126 127
|
syl2anc |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 129 |
17 62
|
mndcl |
|- ( ( ( Poly1 ` K ) e. Mnd /\ X e. ( Base ` ( Poly1 ` K ) ) /\ ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 130 |
120 122 128 129
|
syl3anc |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 131 |
33 7 110 114 130
|
mulgnn0cld |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 132 |
131
|
ralrimiva |
|- ( ph -> A. i e. ( ( 0 ... A ) \ { W } ) ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 133 |
33 37 109 132
|
gsummptcl |
|- ( ph -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 134 |
132
|
r19.21bi |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 135 |
134
|
ralrimiva |
|- ( ph -> A. i e. ( ( 0 ... A ) \ { W } ) ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 136 |
14 15 32 16 17 89 20 31 135 109
|
evl1gprodd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) ) |
| 137 |
133 136
|
jca |
|- ( ph -> ( ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) ) ) |
| 138 |
|
eqid |
|- ( .r ` ( Poly1 ` K ) ) = ( .r ` ( Poly1 ` K ) ) |
| 139 |
32 138
|
mgpplusg |
|- ( .r ` ( Poly1 ` K ) ) = ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 140 |
139
|
eqcomi |
|- ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( .r ` ( Poly1 ` K ) ) |
| 141 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
| 142 |
14 15 16 17 20 31 106 137 140 141
|
evl1muld |
|- ( ph -> ( ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( 1r ` K ) ( .r ` K ) ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) ) ) ) |
| 143 |
142
|
simprd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( 1r ` K ) ( .r ` K ) ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) ) ) |
| 144 |
|
fldidom |
|- ( K e. Field -> K e. IDomn ) |
| 145 |
1 144
|
syl |
|- ( ph -> K e. IDomn ) |
| 146 |
|
isidom |
|- ( K e. IDomn <-> ( K e. CRing /\ K e. Domn ) ) |
| 147 |
145 146
|
sylib |
|- ( ph -> ( K e. CRing /\ K e. Domn ) ) |
| 148 |
147
|
simprd |
|- ( ph -> K e. Domn ) |
| 149 |
98
|
a1i |
|- ( ph -> ( 1r ` K ) = ( 0g ` ( mulGrp ` K ) ) ) |
| 150 |
89
|
ringmgp |
|- ( K e. Ring -> ( mulGrp ` K ) e. Mnd ) |
| 151 |
21 150
|
syl |
|- ( ph -> ( mulGrp ` K ) e. Mnd ) |
| 152 |
90 94
|
mndidcl |
|- ( ( mulGrp ` K ) e. Mnd -> ( 0g ` ( mulGrp ` K ) ) e. ( Base ` K ) ) |
| 153 |
151 152
|
syl |
|- ( ph -> ( 0g ` ( mulGrp ` K ) ) e. ( Base ` K ) ) |
| 154 |
149 153
|
eqeltrd |
|- ( ph -> ( 1r ` K ) e. ( Base ` K ) ) |
| 155 |
1
|
flddrngd |
|- ( ph -> K e. DivRing ) |
| 156 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
| 157 |
156 97
|
drngunz |
|- ( K e. DivRing -> ( 1r ` K ) =/= ( 0g ` K ) ) |
| 158 |
155 157
|
syl |
|- ( ph -> ( 1r ` K ) =/= ( 0g ` K ) ) |
| 159 |
154 158
|
jca |
|- ( ph -> ( ( 1r ` K ) e. ( Base ` K ) /\ ( 1r ` K ) =/= ( 0g ` K ) ) ) |
| 160 |
89
|
crngmgp |
|- ( K e. CRing -> ( mulGrp ` K ) e. CMnd ) |
| 161 |
20 160
|
syl |
|- ( ph -> ( mulGrp ` K ) e. CMnd ) |
| 162 |
20
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> K e. CRing ) |
| 163 |
31
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( ZRHom ` K ) ` ( 0 - W ) ) e. ( Base ` K ) ) |
| 164 |
14 15 16 17 162 163 131
|
fveval1fvcl |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) e. ( Base ` K ) ) |
| 165 |
164
|
ralrimiva |
|- ( ph -> A. i e. ( ( 0 ... A ) \ { W } ) ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) e. ( Base ` K ) ) |
| 166 |
90 161 109 165
|
gsummptcl |
|- ( ph -> ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) e. ( Base ` K ) ) |
| 167 |
33
|
a1i |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 168 |
130 167
|
eleqtrd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 169 |
33
|
eqcomi |
|- ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) |
| 170 |
169
|
a1i |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) ) |
| 171 |
168 170
|
eleqtrd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 172 |
|
eqidd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) |
| 173 |
171 172
|
jca |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) |
| 174 |
14 15 16 17 162 163 173 7 85 114
|
evl1expd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( Y ` i ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) ) |
| 175 |
174
|
simprd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( Y ` i ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) |
| 176 |
145
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> K e. IDomn ) |
| 177 |
14 15 16 17 162 163 171
|
fveval1fvcl |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) e. ( Base ` K ) ) |
| 178 |
|
eldifsni |
|- ( i e. ( ( 0 ... A ) \ { W } ) -> i =/= W ) |
| 179 |
178
|
adantl |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> i =/= W ) |
| 180 |
1
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> K e. Field ) |
| 181 |
2
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> P e. Prime ) |
| 182 |
4
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> A e. NN0 ) |
| 183 |
5
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> A < P ) |
| 184 |
12
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> W e. ( 0 ... A ) ) |
| 185 |
180 181 3 182 183 6 7 8 113 184
|
aks6d1c5lem1 |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( i = W <-> ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 0g ` K ) ) ) |
| 186 |
185
|
necon3bid |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( i =/= W <-> ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) =/= ( 0g ` K ) ) ) |
| 187 |
179 186
|
mpbid |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) =/= ( 0g ` K ) ) |
| 188 |
176 177 187 114 85
|
idomnnzpownz |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( Y ` i ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) =/= ( 0g ` K ) ) |
| 189 |
175 188
|
eqnetrd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) =/= ( 0g ` K ) ) |
| 190 |
89 145 109 164 189
|
idomnnzgmulnz |
|- ( ph -> ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) =/= ( 0g ` K ) ) |
| 191 |
166 190
|
jca |
|- ( ph -> ( ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) e. ( Base ` K ) /\ ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) =/= ( 0g ` K ) ) ) |
| 192 |
16 141 156
|
domnmuln0 |
|- ( ( K e. Domn /\ ( ( 1r ` K ) e. ( Base ` K ) /\ ( 1r ` K ) =/= ( 0g ` K ) ) /\ ( ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) e. ( Base ` K ) /\ ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) =/= ( 0g ` K ) ) ) -> ( ( 1r ` K ) ( .r ` K ) ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) ) =/= ( 0g ` K ) ) |
| 193 |
148 159 191 192
|
syl3anc |
|- ( ph -> ( ( 1r ` K ) ( .r ` K ) ( ( mulGrp ` K ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( ( eval1 ` K ) ` ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) ) =/= ( 0g ` K ) ) |
| 194 |
143 193
|
eqnetrd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) =/= ( 0g ` K ) ) |
| 195 |
194
|
necomd |
|- ( ph -> ( 0g ` K ) =/= ( ( ( eval1 ` K ) ` ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) |
| 196 |
50
|
leidd |
|- ( ph -> ( Y ` W ) <_ ( Y ` W ) ) |
| 197 |
|
eqid |
|- ( quot1p ` K ) = ( quot1p ` K ) |
| 198 |
1 2 3 4 5 6 7 8 9 12 45 196 197 59 32
|
aks6d1c5lem3 |
|- ( ph -> ( ( G ` Y ) ( quot1p ` K ) ( ( Y ` W ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) = ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
| 199 |
198
|
eqcomd |
|- ( ph -> ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = ( ( G ` Y ) ( quot1p ` K ) ( ( Y ` W ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) ) |
| 200 |
11
|
oveq1d |
|- ( ph -> ( ( G ` Y ) ( quot1p ` K ) ( ( Y ` W ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) = ( ( G ` Z ) ( quot1p ` K ) ( ( Y ` W ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) ) |
| 201 |
|
elmapg |
|- ( ( NN0 e. _V /\ ( 0 ... A ) e. _V ) -> ( Z e. ( NN0 ^m ( 0 ... A ) ) <-> Z : ( 0 ... A ) --> NN0 ) ) |
| 202 |
40 41 201
|
syl2anc |
|- ( ph -> ( Z e. ( NN0 ^m ( 0 ... A ) ) <-> Z : ( 0 ... A ) --> NN0 ) ) |
| 203 |
10 202
|
mpbid |
|- ( ph -> Z : ( 0 ... A ) --> NN0 ) |
| 204 |
203 12
|
ffvelcdmd |
|- ( ph -> ( Z ` W ) e. NN0 ) |
| 205 |
204
|
nn0red |
|- ( ph -> ( Z ` W ) e. RR ) |
| 206 |
50 205 13
|
ltled |
|- ( ph -> ( Y ` W ) <_ ( Z ` W ) ) |
| 207 |
1 2 3 4 5 6 7 8 10 12 45 206 197 59 32
|
aks6d1c5lem3 |
|- ( ph -> ( ( G ` Z ) ( quot1p ` K ) ( ( Y ` W ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) = ( ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
| 208 |
199 200 207
|
3eqtrd |
|- ( ph -> ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = ( ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
| 209 |
208
|
fveq2d |
|- ( ph -> ( ( eval1 ` K ) ` ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) = ( ( eval1 ` K ) ` ( ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ) |
| 210 |
209
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( eval1 ` K ) ` ( ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) |
| 211 |
204
|
nn0zd |
|- ( ph -> ( Z ` W ) e. ZZ ) |
| 212 |
211 46
|
zsubcld |
|- ( ph -> ( ( Z ` W ) - ( Y ` W ) ) e. ZZ ) |
| 213 |
205 50
|
resubcld |
|- ( ph -> ( ( Z ` W ) - ( Y ` W ) ) e. RR ) |
| 214 |
50 205
|
posdifd |
|- ( ph -> ( ( Y ` W ) < ( Z ` W ) <-> 0 < ( ( Z ` W ) - ( Y ` W ) ) ) ) |
| 215 |
13 214
|
mpbid |
|- ( ph -> 0 < ( ( Z ` W ) - ( Y ` W ) ) ) |
| 216 |
48 213 215
|
ltled |
|- ( ph -> 0 <_ ( ( Z ` W ) - ( Y ` W ) ) ) |
| 217 |
212 216
|
jca |
|- ( ph -> ( ( ( Z ` W ) - ( Y ` W ) ) e. ZZ /\ 0 <_ ( ( Z ` W ) - ( Y ` W ) ) ) ) |
| 218 |
|
elnn0z |
|- ( ( ( Z ` W ) - ( Y ` W ) ) e. NN0 <-> ( ( ( Z ` W ) - ( Y ` W ) ) e. ZZ /\ 0 <_ ( ( Z ` W ) - ( Y ` W ) ) ) ) |
| 219 |
217 218
|
sylibr |
|- ( ph -> ( ( Z ` W ) - ( Y ` W ) ) e. NN0 ) |
| 220 |
14 15 16 17 20 31 64 7 85 219
|
evl1expd |
|- ( ph -> ( ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( Z ` W ) - ( Y ` W ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( ZRHom ` K ) ` ( 0 - W ) ) ( +g ` K ) ( ( ZRHom ` K ) ` W ) ) ) ) ) |
| 221 |
220
|
simpld |
|- ( ph -> ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 222 |
220
|
simprd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( Z ` W ) - ( Y ` W ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( ZRHom ` K ) ` ( 0 - W ) ) ( +g ` K ) ( ( ZRHom ` K ) ` W ) ) ) ) |
| 223 |
|
rhmghm |
|- ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) e. ( ZZring GrpHom K ) ) |
| 224 |
24 223
|
syl |
|- ( ph -> ( ZRHom ` K ) e. ( ZZring GrpHom K ) ) |
| 225 |
30 25
|
eleqtrdi |
|- ( ph -> ( 0 - W ) e. ( Base ` ZZring ) ) |
| 226 |
29 25
|
eleqtrdi |
|- ( ph -> W e. ( Base ` ZZring ) ) |
| 227 |
|
eqid |
|- ( Base ` ZZring ) = ( Base ` ZZring ) |
| 228 |
|
eqid |
|- ( +g ` ZZring ) = ( +g ` ZZring ) |
| 229 |
227 228 63
|
ghmlin |
|- ( ( ( ZRHom ` K ) e. ( ZZring GrpHom K ) /\ ( 0 - W ) e. ( Base ` ZZring ) /\ W e. ( Base ` ZZring ) ) -> ( ( ZRHom ` K ) ` ( ( 0 - W ) ( +g ` ZZring ) W ) ) = ( ( ( ZRHom ` K ) ` ( 0 - W ) ) ( +g ` K ) ( ( ZRHom ` K ) ` W ) ) ) |
| 230 |
224 225 226 229
|
syl3anc |
|- ( ph -> ( ( ZRHom ` K ) ` ( ( 0 - W ) ( +g ` ZZring ) W ) ) = ( ( ( ZRHom ` K ) ` ( 0 - W ) ) ( +g ` K ) ( ( ZRHom ` K ) ` W ) ) ) |
| 231 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
| 232 |
231
|
eqcomi |
|- ( +g ` ZZring ) = + |
| 233 |
232
|
a1i |
|- ( ph -> ( +g ` ZZring ) = + ) |
| 234 |
233
|
oveqd |
|- ( ph -> ( ( 0 - W ) ( +g ` ZZring ) W ) = ( ( 0 - W ) + W ) ) |
| 235 |
234
|
fveq2d |
|- ( ph -> ( ( ZRHom ` K ) ` ( ( 0 - W ) ( +g ` ZZring ) W ) ) = ( ( ZRHom ` K ) ` ( ( 0 - W ) + W ) ) ) |
| 236 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 237 |
29
|
zcnd |
|- ( ph -> W e. CC ) |
| 238 |
236 237
|
npcand |
|- ( ph -> ( ( 0 - W ) + W ) = 0 ) |
| 239 |
238
|
fveq2d |
|- ( ph -> ( ( ZRHom ` K ) ` ( ( 0 - W ) + W ) ) = ( ( ZRHom ` K ) ` 0 ) ) |
| 240 |
235 239
|
eqtrd |
|- ( ph -> ( ( ZRHom ` K ) ` ( ( 0 - W ) ( +g ` ZZring ) W ) ) = ( ( ZRHom ` K ) ` 0 ) ) |
| 241 |
22 156
|
zrh0 |
|- ( K e. Ring -> ( ( ZRHom ` K ) ` 0 ) = ( 0g ` K ) ) |
| 242 |
21 241
|
syl |
|- ( ph -> ( ( ZRHom ` K ) ` 0 ) = ( 0g ` K ) ) |
| 243 |
240 242
|
eqtrd |
|- ( ph -> ( ( ZRHom ` K ) ` ( ( 0 - W ) ( +g ` ZZring ) W ) ) = ( 0g ` K ) ) |
| 244 |
230 243
|
eqtr3d |
|- ( ph -> ( ( ( ZRHom ` K ) ` ( 0 - W ) ) ( +g ` K ) ( ( ZRHom ` K ) ` W ) ) = ( 0g ` K ) ) |
| 245 |
244
|
oveq2d |
|- ( ph -> ( ( ( Z ` W ) - ( Y ` W ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( ZRHom ` K ) ` ( 0 - W ) ) ( +g ` K ) ( ( ZRHom ` K ) ` W ) ) ) = ( ( ( Z ` W ) - ( Y ` W ) ) ( .g ` ( mulGrp ` K ) ) ( 0g ` K ) ) ) |
| 246 |
219
|
nn0zd |
|- ( ph -> ( ( Z ` W ) - ( Y ` W ) ) e. ZZ ) |
| 247 |
246 215
|
jca |
|- ( ph -> ( ( ( Z ` W ) - ( Y ` W ) ) e. ZZ /\ 0 < ( ( Z ` W ) - ( Y ` W ) ) ) ) |
| 248 |
|
elnnz |
|- ( ( ( Z ` W ) - ( Y ` W ) ) e. NN <-> ( ( ( Z ` W ) - ( Y ` W ) ) e. ZZ /\ 0 < ( ( Z ` W ) - ( Y ` W ) ) ) ) |
| 249 |
247 248
|
sylibr |
|- ( ph -> ( ( Z ` W ) - ( Y ` W ) ) e. NN ) |
| 250 |
21 249 85
|
ringexp0nn |
|- ( ph -> ( ( ( Z ` W ) - ( Y ` W ) ) ( .g ` ( mulGrp ` K ) ) ( 0g ` K ) ) = ( 0g ` K ) ) |
| 251 |
245 250
|
eqtrd |
|- ( ph -> ( ( ( Z ` W ) - ( Y ` W ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( ZRHom ` K ) ` ( 0 - W ) ) ( +g ` K ) ( ( ZRHom ` K ) ` W ) ) ) = ( 0g ` K ) ) |
| 252 |
222 251
|
eqtrd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 0g ` K ) ) |
| 253 |
221 252
|
jca |
|- ( ph -> ( ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 0g ` K ) ) ) |
| 254 |
|
eqid |
|- ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 255 |
203
|
adantr |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> Z : ( 0 ... A ) --> NN0 ) |
| 256 |
255 113
|
ffvelcdmd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( Z ` i ) e. NN0 ) |
| 257 |
254 7 110 256 168
|
mulgnn0cld |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 258 |
257 170
|
eleqtrd |
|- ( ( ph /\ i e. ( ( 0 ... A ) \ { W } ) ) -> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 259 |
258
|
ralrimiva |
|- ( ph -> A. i e. ( ( 0 ... A ) \ { W } ) ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 260 |
33 37 109 259
|
gsummptcl |
|- ( ph -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 261 |
|
eqidd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( eval1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) |
| 262 |
260 261
|
jca |
|- ( ph -> ( ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( ( eval1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) |
| 263 |
14 15 16 17 20 31 253 262 140 141
|
evl1muld |
|- ( ph -> ( ( ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( 0g ` K ) ( .r ` K ) ( ( ( eval1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) ) |
| 264 |
263
|
simprd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( ( 0g ` K ) ( .r ` K ) ( ( ( eval1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) ) |
| 265 |
14 15 16 17 20 31 260
|
fveval1fvcl |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) e. ( Base ` K ) ) |
| 266 |
16 141 156 21 265
|
ringlzd |
|- ( ph -> ( ( 0g ` K ) ( .r ` K ) ( ( ( eval1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) ) = ( 0g ` K ) ) |
| 267 |
264 266
|
eqtrd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( ( ( Z ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Z ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 0g ` K ) ) |
| 268 |
210 267
|
eqtrd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( ( ( Y ` W ) - ( Y ` W ) ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` W ) ) ) ) ( +g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( ( 0 ... A ) \ { W } ) |-> ( ( Y ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ` ( ( ZRHom ` K ) ` ( 0 - W ) ) ) = ( 0g ` K ) ) |
| 269 |
195 268
|
neeqtrd |
|- ( ph -> ( 0g ` K ) =/= ( 0g ` K ) ) |