| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idomnnzpownz.1 |
|- ( ph -> R e. IDomn ) |
| 2 |
|
idomnnzpownz.2 |
|- ( ph -> A e. ( Base ` R ) ) |
| 3 |
|
idomnnzpownz.3 |
|- ( ph -> A =/= ( 0g ` R ) ) |
| 4 |
|
idomnnzpownz.4 |
|- ( ph -> N e. NN0 ) |
| 5 |
|
idomnnzpownz.5 |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
| 6 |
4
|
ancli |
|- ( ph -> ( ph /\ N e. NN0 ) ) |
| 7 |
|
oveq1 |
|- ( x = 0 -> ( x .^ A ) = ( 0 .^ A ) ) |
| 8 |
7
|
neeq1d |
|- ( x = 0 -> ( ( x .^ A ) =/= ( 0g ` R ) <-> ( 0 .^ A ) =/= ( 0g ` R ) ) ) |
| 9 |
|
oveq1 |
|- ( x = y -> ( x .^ A ) = ( y .^ A ) ) |
| 10 |
9
|
neeq1d |
|- ( x = y -> ( ( x .^ A ) =/= ( 0g ` R ) <-> ( y .^ A ) =/= ( 0g ` R ) ) ) |
| 11 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x .^ A ) = ( ( y + 1 ) .^ A ) ) |
| 12 |
11
|
neeq1d |
|- ( x = ( y + 1 ) -> ( ( x .^ A ) =/= ( 0g ` R ) <-> ( ( y + 1 ) .^ A ) =/= ( 0g ` R ) ) ) |
| 13 |
|
oveq1 |
|- ( x = N -> ( x .^ A ) = ( N .^ A ) ) |
| 14 |
13
|
neeq1d |
|- ( x = N -> ( ( x .^ A ) =/= ( 0g ` R ) <-> ( N .^ A ) =/= ( 0g ` R ) ) ) |
| 15 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 16 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 17 |
15 16
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 18 |
2 17
|
eleqtrdi |
|- ( ph -> A e. ( Base ` ( mulGrp ` R ) ) ) |
| 19 |
|
eqid |
|- ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) |
| 20 |
|
eqid |
|- ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) |
| 21 |
19 20 5
|
mulg0 |
|- ( A e. ( Base ` ( mulGrp ` R ) ) -> ( 0 .^ A ) = ( 0g ` ( mulGrp ` R ) ) ) |
| 22 |
18 21
|
syl |
|- ( ph -> ( 0 .^ A ) = ( 0g ` ( mulGrp ` R ) ) ) |
| 23 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 24 |
15 23
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 25 |
22 24
|
eqtr4di |
|- ( ph -> ( 0 .^ A ) = ( 1r ` R ) ) |
| 26 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
| 27 |
26
|
simprbi |
|- ( R e. IDomn -> R e. Domn ) |
| 28 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 29 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 30 |
23 29
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 31 |
1 27 28 30
|
4syl |
|- ( ph -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 32 |
25 31
|
eqnetrd |
|- ( ph -> ( 0 .^ A ) =/= ( 0g ` R ) ) |
| 33 |
1
|
idomringd |
|- ( ph -> R e. Ring ) |
| 34 |
15
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 35 |
33 34
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> ( mulGrp ` R ) e. Mnd ) |
| 37 |
36
|
adantr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( mulGrp ` R ) e. Mnd ) |
| 38 |
|
simplr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> y e. NN0 ) |
| 39 |
18
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> A e. ( Base ` ( mulGrp ` R ) ) ) |
| 40 |
|
eqid |
|- ( +g ` ( mulGrp ` R ) ) = ( +g ` ( mulGrp ` R ) ) |
| 41 |
19 5 40
|
mulgnn0p1 |
|- ( ( ( mulGrp ` R ) e. Mnd /\ y e. NN0 /\ A e. ( Base ` ( mulGrp ` R ) ) ) -> ( ( y + 1 ) .^ A ) = ( ( y .^ A ) ( +g ` ( mulGrp ` R ) ) A ) ) |
| 42 |
37 38 39 41
|
syl3anc |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( ( y + 1 ) .^ A ) = ( ( y .^ A ) ( +g ` ( mulGrp ` R ) ) A ) ) |
| 43 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 44 |
15 43
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 45 |
44
|
a1i |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) ) |
| 46 |
45
|
eqcomd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( +g ` ( mulGrp ` R ) ) = ( .r ` R ) ) |
| 47 |
46
|
oveqd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( ( y .^ A ) ( +g ` ( mulGrp ` R ) ) A ) = ( ( y .^ A ) ( .r ` R ) A ) ) |
| 48 |
1 27
|
syl |
|- ( ph -> R e. Domn ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> R e. Domn ) |
| 50 |
49
|
adantr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> R e. Domn ) |
| 51 |
19 5
|
mulgnn0cl |
|- ( ( ( mulGrp ` R ) e. Mnd /\ y e. NN0 /\ A e. ( Base ` ( mulGrp ` R ) ) ) -> ( y .^ A ) e. ( Base ` ( mulGrp ` R ) ) ) |
| 52 |
37 38 39 51
|
syl3anc |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( y .^ A ) e. ( Base ` ( mulGrp ` R ) ) ) |
| 53 |
17
|
eqcomi |
|- ( Base ` ( mulGrp ` R ) ) = ( Base ` R ) |
| 54 |
53
|
a1i |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( Base ` ( mulGrp ` R ) ) = ( Base ` R ) ) |
| 55 |
52 54
|
eleqtrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( y .^ A ) e. ( Base ` R ) ) |
| 56 |
|
simpr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( y .^ A ) =/= ( 0g ` R ) ) |
| 57 |
55 56
|
jca |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( ( y .^ A ) e. ( Base ` R ) /\ ( y .^ A ) =/= ( 0g ` R ) ) ) |
| 58 |
2 3
|
jca |
|- ( ph -> ( A e. ( Base ` R ) /\ A =/= ( 0g ` R ) ) ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> ( A e. ( Base ` R ) /\ A =/= ( 0g ` R ) ) ) |
| 60 |
59
|
adantr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( A e. ( Base ` R ) /\ A =/= ( 0g ` R ) ) ) |
| 61 |
16 43 29
|
domnmuln0 |
|- ( ( R e. Domn /\ ( ( y .^ A ) e. ( Base ` R ) /\ ( y .^ A ) =/= ( 0g ` R ) ) /\ ( A e. ( Base ` R ) /\ A =/= ( 0g ` R ) ) ) -> ( ( y .^ A ) ( .r ` R ) A ) =/= ( 0g ` R ) ) |
| 62 |
50 57 60 61
|
syl3anc |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( ( y .^ A ) ( .r ` R ) A ) =/= ( 0g ` R ) ) |
| 63 |
47 62
|
eqnetrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( ( y .^ A ) ( +g ` ( mulGrp ` R ) ) A ) =/= ( 0g ` R ) ) |
| 64 |
42 63
|
eqnetrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ A ) =/= ( 0g ` R ) ) -> ( ( y + 1 ) .^ A ) =/= ( 0g ` R ) ) |
| 65 |
8 10 12 14 32 64
|
nn0indd |
|- ( ( ph /\ N e. NN0 ) -> ( N .^ A ) =/= ( 0g ` R ) ) |
| 66 |
6 65
|
syl |
|- ( ph -> ( N .^ A ) =/= ( 0g ` R ) ) |