Step |
Hyp |
Ref |
Expression |
1 |
|
idomnnzpownz.1 |
|
2 |
|
idomnnzpownz.2 |
|
3 |
|
idomnnzpownz.3 |
|
4 |
|
idomnnzpownz.4 |
|
5 |
|
idomnnzpownz.5 |
|
6 |
4
|
ancli |
|
7 |
|
oveq1 |
|
8 |
7
|
neeq1d |
|
9 |
|
oveq1 |
|
10 |
9
|
neeq1d |
|
11 |
|
oveq1 |
|
12 |
11
|
neeq1d |
|
13 |
|
oveq1 |
|
14 |
13
|
neeq1d |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
15 16
|
mgpbas |
|
18 |
2 17
|
eleqtrdi |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
19 20 5
|
mulg0 |
|
22 |
18 21
|
syl |
|
23 |
|
eqid |
|
24 |
15 23
|
ringidval |
|
25 |
22 24
|
eqtr4di |
|
26 |
|
isidom |
|
27 |
26
|
simprbi |
|
28 |
|
domnnzr |
|
29 |
|
eqid |
|
30 |
23 29
|
nzrnz |
|
31 |
1 27 28 30
|
4syl |
|
32 |
25 31
|
eqnetrd |
|
33 |
1
|
idomringd |
|
34 |
15
|
ringmgp |
|
35 |
33 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
36
|
adantr |
|
38 |
|
simplr |
|
39 |
18
|
ad2antrr |
|
40 |
|
eqid |
|
41 |
19 5 40
|
mulgnn0p1 |
|
42 |
37 38 39 41
|
syl3anc |
|
43 |
|
eqid |
|
44 |
15 43
|
mgpplusg |
|
45 |
44
|
a1i |
|
46 |
45
|
eqcomd |
|
47 |
46
|
oveqd |
|
48 |
1 27
|
syl |
|
49 |
48
|
adantr |
|
50 |
49
|
adantr |
|
51 |
19 5
|
mulgnn0cl |
|
52 |
37 38 39 51
|
syl3anc |
|
53 |
17
|
eqcomi |
|
54 |
53
|
a1i |
|
55 |
52 54
|
eleqtrd |
|
56 |
|
simpr |
|
57 |
55 56
|
jca |
|
58 |
2 3
|
jca |
|
59 |
58
|
adantr |
|
60 |
59
|
adantr |
|
61 |
16 43 29
|
domnmuln0 |
|
62 |
50 57 60 61
|
syl3anc |
|
63 |
47 62
|
eqnetrd |
|
64 |
42 63
|
eqnetrd |
|
65 |
8 10 12 14 32 64
|
nn0indd |
|
66 |
6 65
|
syl |
|