| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1p5.1 |
|- ( ph -> K e. Field ) |
| 2 |
|
aks6d1p5.2 |
|- ( ph -> P e. Prime ) |
| 3 |
|
aks6d1c5.3 |
|- P = ( chr ` K ) |
| 4 |
|
aks6d1c5.4 |
|- ( ph -> A e. NN0 ) |
| 5 |
|
aks6d1c5.5 |
|- ( ph -> A < P ) |
| 6 |
|
aks6d1c5.6 |
|- X = ( var1 ` K ) |
| 7 |
|
aks6d1c5.7 |
|- .^ = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 8 |
|
aks6d1c5.8 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
| 9 |
|
eqid |
|- ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 10 |
1
|
fldcrngd |
|- ( ph -> K e. CRing ) |
| 11 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
| 12 |
11
|
ply1crng |
|- ( K e. CRing -> ( Poly1 ` K ) e. CRing ) |
| 13 |
10 12
|
syl |
|- ( ph -> ( Poly1 ` K ) e. CRing ) |
| 14 |
|
eqid |
|- ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) |
| 15 |
14
|
crngmgp |
|- ( ( Poly1 ` K ) e. CRing -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) |
| 16 |
13 15
|
syl |
|- ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) |
| 18 |
|
fzfid |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( 0 ... A ) e. Fin ) |
| 19 |
17
|
cmnmndd |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
| 20 |
19
|
adantr |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
| 21 |
|
nn0ex |
|- NN0 e. _V |
| 22 |
21
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 23 |
|
ovexd |
|- ( ph -> ( 0 ... A ) e. _V ) |
| 24 |
22 23
|
elmapd |
|- ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) <-> g : ( 0 ... A ) --> NN0 ) ) |
| 25 |
24
|
biimpd |
|- ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) -> g : ( 0 ... A ) --> NN0 ) ) |
| 26 |
25
|
imp |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> g : ( 0 ... A ) --> NN0 ) |
| 27 |
26
|
ffvelcdmda |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( g ` i ) e. NN0 ) |
| 28 |
13
|
crngringd |
|- ( ph -> ( Poly1 ` K ) e. Ring ) |
| 29 |
28
|
ringcmnd |
|- ( ph -> ( Poly1 ` K ) e. CMnd ) |
| 30 |
|
cmnmnd |
|- ( ( Poly1 ` K ) e. CMnd -> ( Poly1 ` K ) e. Mnd ) |
| 31 |
29 30
|
syl |
|- ( ph -> ( Poly1 ` K ) e. Mnd ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( Poly1 ` K ) e. Mnd ) |
| 33 |
32
|
adantr |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( Poly1 ` K ) e. Mnd ) |
| 34 |
10
|
crngringd |
|- ( ph -> K e. Ring ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> K e. Ring ) |
| 36 |
35
|
adantr |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> K e. Ring ) |
| 37 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
| 38 |
6 11 37
|
vr1cl |
|- ( K e. Ring -> X e. ( Base ` ( Poly1 ` K ) ) ) |
| 39 |
36 38
|
syl |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> X e. ( Base ` ( Poly1 ` K ) ) ) |
| 40 |
|
simpl |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) ) |
| 41 |
|
elfzelz |
|- ( i e. ( 0 ... A ) -> i e. ZZ ) |
| 42 |
41
|
adantl |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> i e. ZZ ) |
| 43 |
40 42
|
jca |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ZZ ) ) |
| 44 |
|
eqid |
|- ( ZRHom ` K ) = ( ZRHom ` K ) |
| 45 |
44
|
zrhrhm |
|- ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
| 46 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 47 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 48 |
46 47
|
rhmf |
|- ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 49 |
45 48
|
syl |
|- ( K e. Ring -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 50 |
35 49
|
syl |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 51 |
50
|
ffvelcdmda |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ZZ ) -> ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) |
| 52 |
43 51
|
syl |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) |
| 53 |
|
eqid |
|- ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) |
| 54 |
11 53 47 37
|
ply1sclcl |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 55 |
36 52 54
|
syl2anc |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 56 |
|
eqid |
|- ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) |
| 57 |
37 56
|
mndcl |
|- ( ( ( Poly1 ` K ) e. Mnd /\ X e. ( Base ` ( Poly1 ` K ) ) /\ ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 58 |
33 39 55 57
|
syl3anc |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 59 |
14 37
|
mgpbas |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 60 |
59
|
a1i |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 61 |
58 60
|
eleqtrd |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 62 |
9 7 20 27 61
|
mulgnn0cld |
|- ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 63 |
62
|
ralrimiva |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> A. i e. ( 0 ... A ) ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 64 |
9 17 18 63
|
gsummptcl |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) |
| 65 |
59
|
eqcomi |
|- ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) |
| 66 |
65
|
a1i |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) ) |
| 67 |
64 66
|
eleqtrd |
|- ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 68 |
67 8
|
fmptd |
|- ( ph -> G : ( NN0 ^m ( 0 ... A ) ) --> ( Base ` ( Poly1 ` K ) ) ) |
| 69 |
|
eqidd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( 0g ` K ) = ( 0g ` K ) ) |
| 70 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> x =/= y ) |
| 71 |
70
|
neneqd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> -. x = y ) |
| 72 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> x e. ( NN0 ^m ( 0 ... A ) ) ) |
| 73 |
21
|
a1i |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> NN0 e. _V ) |
| 74 |
|
ovexd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( 0 ... A ) e. _V ) |
| 75 |
73 74
|
elmapd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( x e. ( NN0 ^m ( 0 ... A ) ) <-> x : ( 0 ... A ) --> NN0 ) ) |
| 76 |
72 75
|
mpbid |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> x : ( 0 ... A ) --> NN0 ) |
| 77 |
|
ffn |
|- ( x : ( 0 ... A ) --> NN0 -> x Fn ( 0 ... A ) ) |
| 78 |
76 77
|
syl |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> x Fn ( 0 ... A ) ) |
| 79 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> y e. ( NN0 ^m ( 0 ... A ) ) ) |
| 80 |
73 74
|
elmapd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( y e. ( NN0 ^m ( 0 ... A ) ) <-> y : ( 0 ... A ) --> NN0 ) ) |
| 81 |
79 80
|
mpbid |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> y : ( 0 ... A ) --> NN0 ) |
| 82 |
|
ffn |
|- ( y : ( 0 ... A ) --> NN0 -> y Fn ( 0 ... A ) ) |
| 83 |
81 82
|
syl |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> y Fn ( 0 ... A ) ) |
| 84 |
|
eqfnfv2 |
|- ( ( x Fn ( 0 ... A ) /\ y Fn ( 0 ... A ) ) -> ( x = y <-> ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) ) |
| 85 |
78 83 84
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( x = y <-> ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) ) |
| 86 |
85
|
notbid |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( -. x = y <-> -. ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) ) |
| 87 |
86
|
biimpd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( -. x = y -> -. ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) ) |
| 88 |
71 87
|
mpd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> -. ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) |
| 89 |
|
ianor |
|- ( -. ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) <-> ( -. ( 0 ... A ) = ( 0 ... A ) \/ -. A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) |
| 90 |
88 89
|
sylib |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( -. ( 0 ... A ) = ( 0 ... A ) \/ -. A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) |
| 91 |
|
eqidd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( 0 ... A ) = ( 0 ... A ) ) |
| 92 |
91
|
notnotd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> -. -. ( 0 ... A ) = ( 0 ... A ) ) |
| 93 |
90 92
|
orcnd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> -. A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) |
| 94 |
|
rexnal |
|- ( E. z e. ( 0 ... A ) -. ( x ` z ) = ( y ` z ) <-> -. A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) |
| 95 |
93 94
|
sylibr |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> E. z e. ( 0 ... A ) -. ( x ` z ) = ( y ` z ) ) |
| 96 |
|
df-ne |
|- ( ( x ` z ) =/= ( y ` z ) <-> -. ( x ` z ) = ( y ` z ) ) |
| 97 |
96
|
rexbii |
|- ( E. z e. ( 0 ... A ) ( x ` z ) =/= ( y ` z ) <-> E. z e. ( 0 ... A ) -. ( x ` z ) = ( y ` z ) ) |
| 98 |
95 97
|
sylibr |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> E. z e. ( 0 ... A ) ( x ` z ) =/= ( y ` z ) ) |
| 99 |
|
simpl |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ ( z e. ( 0 ... A ) /\ ( x ` z ) =/= ( y ` z ) ) ) -> ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) ) |
| 100 |
|
simprl |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ ( z e. ( 0 ... A ) /\ ( x ` z ) =/= ( y ` z ) ) ) -> z e. ( 0 ... A ) ) |
| 101 |
|
simprr |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ ( z e. ( 0 ... A ) /\ ( x ` z ) =/= ( y ` z ) ) ) -> ( x ` z ) =/= ( y ` z ) ) |
| 102 |
99 100 101
|
jca31 |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ ( z e. ( 0 ... A ) /\ ( x ` z ) =/= ( y ` z ) ) ) -> ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) =/= ( y ` z ) ) ) |
| 103 |
75
|
biimpd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( x e. ( NN0 ^m ( 0 ... A ) ) -> x : ( 0 ... A ) --> NN0 ) ) |
| 104 |
72 103
|
mpd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> x : ( 0 ... A ) --> NN0 ) |
| 105 |
104
|
ffvelcdmda |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( x ` z ) e. NN0 ) |
| 106 |
105
|
nn0red |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( x ` z ) e. RR ) |
| 107 |
80
|
biimpd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( y e. ( NN0 ^m ( 0 ... A ) ) -> y : ( 0 ... A ) --> NN0 ) ) |
| 108 |
79 107
|
mpd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> y : ( 0 ... A ) --> NN0 ) |
| 109 |
108
|
ffvelcdmda |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( y ` z ) e. NN0 ) |
| 110 |
109
|
nn0red |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( y ` z ) e. RR ) |
| 111 |
106 110
|
lttri2d |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( ( x ` z ) =/= ( y ` z ) <-> ( ( x ` z ) < ( y ` z ) \/ ( y ` z ) < ( x ` z ) ) ) ) |
| 112 |
1
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> K e. Field ) |
| 113 |
2
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> P e. Prime ) |
| 114 |
4
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> A e. NN0 ) |
| 115 |
5
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> A < P ) |
| 116 |
72
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> x e. ( NN0 ^m ( 0 ... A ) ) ) |
| 117 |
79
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> y e. ( NN0 ^m ( 0 ... A ) ) ) |
| 118 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> ( G ` x ) = ( G ` y ) ) |
| 119 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> z e. ( 0 ... A ) ) |
| 120 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> ( x ` z ) < ( y ` z ) ) |
| 121 |
112 113 3 114 115 6 7 8 116 117 118 119 120
|
aks6d1c5lem2 |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) |
| 122 |
1
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> K e. Field ) |
| 123 |
2
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> P e. Prime ) |
| 124 |
4
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> A e. NN0 ) |
| 125 |
5
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> A < P ) |
| 126 |
79
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> y e. ( NN0 ^m ( 0 ... A ) ) ) |
| 127 |
72
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> x e. ( NN0 ^m ( 0 ... A ) ) ) |
| 128 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> ( G ` x ) = ( G ` y ) ) |
| 129 |
128
|
eqcomd |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> ( G ` y ) = ( G ` x ) ) |
| 130 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> z e. ( 0 ... A ) ) |
| 131 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> ( y ` z ) < ( x ` z ) ) |
| 132 |
122 123 3 124 125 6 7 8 126 127 129 130 131
|
aks6d1c5lem2 |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) |
| 133 |
121 132
|
jaodan |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( ( x ` z ) < ( y ` z ) \/ ( y ` z ) < ( x ` z ) ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) |
| 134 |
133
|
ex |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( ( ( x ` z ) < ( y ` z ) \/ ( y ` z ) < ( x ` z ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) ) |
| 135 |
111 134
|
sylbid |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( ( x ` z ) =/= ( y ` z ) -> ( 0g ` K ) =/= ( 0g ` K ) ) ) |
| 136 |
135
|
imp |
|- ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) =/= ( y ` z ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) |
| 137 |
102 136
|
syl |
|- ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ ( z e. ( 0 ... A ) /\ ( x ` z ) =/= ( y ` z ) ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) |
| 138 |
98 137
|
rexlimddv |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( 0g ` K ) =/= ( 0g ` K ) ) |
| 139 |
138
|
neneqd |
|- ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> -. ( 0g ` K ) = ( 0g ` K ) ) |
| 140 |
69 139
|
pm2.65da |
|- ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) -> -. x =/= y ) |
| 141 |
|
df-ne |
|- ( x =/= y <-> -. x = y ) |
| 142 |
141
|
notbii |
|- ( -. x =/= y <-> -. -. x = y ) |
| 143 |
140 142
|
sylib |
|- ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) -> -. -. x = y ) |
| 144 |
|
notnotb |
|- ( x = y <-> -. -. x = y ) |
| 145 |
143 144
|
sylibr |
|- ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) -> x = y ) |
| 146 |
145
|
ex |
|- ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( G ` x ) = ( G ` y ) -> x = y ) ) |
| 147 |
146
|
ralrimiva |
|- ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) -> A. y e. ( NN0 ^m ( 0 ... A ) ) ( ( G ` x ) = ( G ` y ) -> x = y ) ) |
| 148 |
147
|
ralrimiva |
|- ( ph -> A. x e. ( NN0 ^m ( 0 ... A ) ) A. y e. ( NN0 ^m ( 0 ... A ) ) ( ( G ` x ) = ( G ` y ) -> x = y ) ) |
| 149 |
68 148
|
jca |
|- ( ph -> ( G : ( NN0 ^m ( 0 ... A ) ) --> ( Base ` ( Poly1 ` K ) ) /\ A. x e. ( NN0 ^m ( 0 ... A ) ) A. y e. ( NN0 ^m ( 0 ... A ) ) ( ( G ` x ) = ( G ` y ) -> x = y ) ) ) |
| 150 |
|
dff13 |
|- ( G : ( NN0 ^m ( 0 ... A ) ) -1-1-> ( Base ` ( Poly1 ` K ) ) <-> ( G : ( NN0 ^m ( 0 ... A ) ) --> ( Base ` ( Poly1 ` K ) ) /\ A. x e. ( NN0 ^m ( 0 ... A ) ) A. y e. ( NN0 ^m ( 0 ... A ) ) ( ( G ` x ) = ( G ` y ) -> x = y ) ) ) |
| 151 |
149 150
|
sylibr |
|- ( ph -> G : ( NN0 ^m ( 0 ... A ) ) -1-1-> ( Base ` ( Poly1 ` K ) ) ) |