| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1p5.1 |  |-  ( ph -> K e. Field ) | 
						
							| 2 |  | aks6d1p5.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 3 |  | aks6d1c5.3 |  |-  P = ( chr ` K ) | 
						
							| 4 |  | aks6d1c5.4 |  |-  ( ph -> A e. NN0 ) | 
						
							| 5 |  | aks6d1c5.5 |  |-  ( ph -> A < P ) | 
						
							| 6 |  | aks6d1c5.6 |  |-  X = ( var1 ` K ) | 
						
							| 7 |  | aks6d1c5.7 |  |-  .^ = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 8 |  | aks6d1c5.8 |  |-  G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 10 | 1 | fldcrngd |  |-  ( ph -> K e. CRing ) | 
						
							| 11 |  | eqid |  |-  ( Poly1 ` K ) = ( Poly1 ` K ) | 
						
							| 12 | 11 | ply1crng |  |-  ( K e. CRing -> ( Poly1 ` K ) e. CRing ) | 
						
							| 13 | 10 12 | syl |  |-  ( ph -> ( Poly1 ` K ) e. CRing ) | 
						
							| 14 |  | eqid |  |-  ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) | 
						
							| 15 | 14 | crngmgp |  |-  ( ( Poly1 ` K ) e. CRing -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) | 
						
							| 16 | 13 15 | syl |  |-  ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. CMnd ) | 
						
							| 18 |  | fzfid |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( 0 ... A ) e. Fin ) | 
						
							| 19 | 17 | cmnmndd |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) | 
						
							| 21 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 22 | 21 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 23 |  | ovexd |  |-  ( ph -> ( 0 ... A ) e. _V ) | 
						
							| 24 | 22 23 | elmapd |  |-  ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) <-> g : ( 0 ... A ) --> NN0 ) ) | 
						
							| 25 | 24 | biimpd |  |-  ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) -> g : ( 0 ... A ) --> NN0 ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> g : ( 0 ... A ) --> NN0 ) | 
						
							| 27 | 26 | ffvelcdmda |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( g ` i ) e. NN0 ) | 
						
							| 28 | 13 | crngringd |  |-  ( ph -> ( Poly1 ` K ) e. Ring ) | 
						
							| 29 | 28 | ringcmnd |  |-  ( ph -> ( Poly1 ` K ) e. CMnd ) | 
						
							| 30 |  | cmnmnd |  |-  ( ( Poly1 ` K ) e. CMnd -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 31 | 29 30 | syl |  |-  ( ph -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 34 | 10 | crngringd |  |-  ( ph -> K e. Ring ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> K e. Ring ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> K e. Ring ) | 
						
							| 37 |  | eqid |  |-  ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) | 
						
							| 38 | 6 11 37 | vr1cl |  |-  ( K e. Ring -> X e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 39 | 36 38 | syl |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> X e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 40 |  | simpl |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) ) | 
						
							| 41 |  | elfzelz |  |-  ( i e. ( 0 ... A ) -> i e. ZZ ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> i e. ZZ ) | 
						
							| 43 | 40 42 | jca |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ZZ ) ) | 
						
							| 44 |  | eqid |  |-  ( ZRHom ` K ) = ( ZRHom ` K ) | 
						
							| 45 | 44 | zrhrhm |  |-  ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) | 
						
							| 46 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 47 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 48 | 46 47 | rhmf |  |-  ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 49 | 45 48 | syl |  |-  ( K e. Ring -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 50 | 35 49 | syl |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 51 | 50 | ffvelcdmda |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ZZ ) -> ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) | 
						
							| 52 | 43 51 | syl |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) | 
						
							| 53 |  | eqid |  |-  ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) | 
						
							| 54 | 11 53 47 37 | ply1sclcl |  |-  ( ( K e. Ring /\ ( ( ZRHom ` K ) ` i ) e. ( Base ` K ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 55 | 36 52 54 | syl2anc |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 56 |  | eqid |  |-  ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) | 
						
							| 57 | 37 56 | mndcl |  |-  ( ( ( Poly1 ` K ) e. Mnd /\ X e. ( Base ` ( Poly1 ` K ) ) /\ ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 58 | 33 39 55 57 | syl3anc |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 59 | 14 37 | mgpbas |  |-  ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 60 | 59 | a1i |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) | 
						
							| 61 | 58 60 | eleqtrd |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) | 
						
							| 62 | 9 7 20 27 61 | mulgnn0cld |  |-  ( ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) /\ i e. ( 0 ... A ) ) -> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) | 
						
							| 63 | 62 | ralrimiva |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> A. i e. ( 0 ... A ) ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) | 
						
							| 64 | 9 17 18 63 | gsummptcl |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) ) | 
						
							| 65 | 59 | eqcomi |  |-  ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) | 
						
							| 66 | 65 | a1i |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 67 | 64 66 | eleqtrd |  |-  ( ( ph /\ g e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) .^ ( X ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 68 | 67 8 | fmptd |  |-  ( ph -> G : ( NN0 ^m ( 0 ... A ) ) --> ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 69 |  | eqidd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( 0g ` K ) = ( 0g ` K ) ) | 
						
							| 70 |  | simpr |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> x =/= y ) | 
						
							| 71 | 70 | neneqd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> -. x = y ) | 
						
							| 72 |  | simp-4r |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> x e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 73 | 21 | a1i |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> NN0 e. _V ) | 
						
							| 74 |  | ovexd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( 0 ... A ) e. _V ) | 
						
							| 75 | 73 74 | elmapd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( x e. ( NN0 ^m ( 0 ... A ) ) <-> x : ( 0 ... A ) --> NN0 ) ) | 
						
							| 76 | 72 75 | mpbid |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> x : ( 0 ... A ) --> NN0 ) | 
						
							| 77 |  | ffn |  |-  ( x : ( 0 ... A ) --> NN0 -> x Fn ( 0 ... A ) ) | 
						
							| 78 | 76 77 | syl |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> x Fn ( 0 ... A ) ) | 
						
							| 79 |  | simpllr |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> y e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 80 | 73 74 | elmapd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( y e. ( NN0 ^m ( 0 ... A ) ) <-> y : ( 0 ... A ) --> NN0 ) ) | 
						
							| 81 | 79 80 | mpbid |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> y : ( 0 ... A ) --> NN0 ) | 
						
							| 82 |  | ffn |  |-  ( y : ( 0 ... A ) --> NN0 -> y Fn ( 0 ... A ) ) | 
						
							| 83 | 81 82 | syl |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> y Fn ( 0 ... A ) ) | 
						
							| 84 |  | eqfnfv2 |  |-  ( ( x Fn ( 0 ... A ) /\ y Fn ( 0 ... A ) ) -> ( x = y <-> ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) ) | 
						
							| 85 | 78 83 84 | syl2anc |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( x = y <-> ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) ) | 
						
							| 86 | 85 | notbid |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( -. x = y <-> -. ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) ) | 
						
							| 87 | 86 | biimpd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( -. x = y -> -. ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) ) | 
						
							| 88 | 71 87 | mpd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> -. ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) | 
						
							| 89 |  | ianor |  |-  ( -. ( ( 0 ... A ) = ( 0 ... A ) /\ A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) <-> ( -. ( 0 ... A ) = ( 0 ... A ) \/ -. A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) | 
						
							| 90 | 88 89 | sylib |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( -. ( 0 ... A ) = ( 0 ... A ) \/ -. A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) ) | 
						
							| 91 |  | eqidd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( 0 ... A ) = ( 0 ... A ) ) | 
						
							| 92 | 91 | notnotd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> -. -. ( 0 ... A ) = ( 0 ... A ) ) | 
						
							| 93 | 90 92 | orcnd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> -. A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) | 
						
							| 94 |  | rexnal |  |-  ( E. z e. ( 0 ... A ) -. ( x ` z ) = ( y ` z ) <-> -. A. z e. ( 0 ... A ) ( x ` z ) = ( y ` z ) ) | 
						
							| 95 | 93 94 | sylibr |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> E. z e. ( 0 ... A ) -. ( x ` z ) = ( y ` z ) ) | 
						
							| 96 |  | df-ne |  |-  ( ( x ` z ) =/= ( y ` z ) <-> -. ( x ` z ) = ( y ` z ) ) | 
						
							| 97 | 96 | rexbii |  |-  ( E. z e. ( 0 ... A ) ( x ` z ) =/= ( y ` z ) <-> E. z e. ( 0 ... A ) -. ( x ` z ) = ( y ` z ) ) | 
						
							| 98 | 95 97 | sylibr |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> E. z e. ( 0 ... A ) ( x ` z ) =/= ( y ` z ) ) | 
						
							| 99 |  | simpl |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ ( z e. ( 0 ... A ) /\ ( x ` z ) =/= ( y ` z ) ) ) -> ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) ) | 
						
							| 100 |  | simprl |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ ( z e. ( 0 ... A ) /\ ( x ` z ) =/= ( y ` z ) ) ) -> z e. ( 0 ... A ) ) | 
						
							| 101 |  | simprr |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ ( z e. ( 0 ... A ) /\ ( x ` z ) =/= ( y ` z ) ) ) -> ( x ` z ) =/= ( y ` z ) ) | 
						
							| 102 | 99 100 101 | jca31 |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ ( z e. ( 0 ... A ) /\ ( x ` z ) =/= ( y ` z ) ) ) -> ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) =/= ( y ` z ) ) ) | 
						
							| 103 | 75 | biimpd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( x e. ( NN0 ^m ( 0 ... A ) ) -> x : ( 0 ... A ) --> NN0 ) ) | 
						
							| 104 | 72 103 | mpd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> x : ( 0 ... A ) --> NN0 ) | 
						
							| 105 | 104 | ffvelcdmda |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( x ` z ) e. NN0 ) | 
						
							| 106 | 105 | nn0red |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( x ` z ) e. RR ) | 
						
							| 107 | 80 | biimpd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( y e. ( NN0 ^m ( 0 ... A ) ) -> y : ( 0 ... A ) --> NN0 ) ) | 
						
							| 108 | 79 107 | mpd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> y : ( 0 ... A ) --> NN0 ) | 
						
							| 109 | 108 | ffvelcdmda |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( y ` z ) e. NN0 ) | 
						
							| 110 | 109 | nn0red |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( y ` z ) e. RR ) | 
						
							| 111 | 106 110 | lttri2d |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( ( x ` z ) =/= ( y ` z ) <-> ( ( x ` z ) < ( y ` z ) \/ ( y ` z ) < ( x ` z ) ) ) ) | 
						
							| 112 | 1 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> K e. Field ) | 
						
							| 113 | 2 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> P e. Prime ) | 
						
							| 114 | 4 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> A e. NN0 ) | 
						
							| 115 | 5 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> A < P ) | 
						
							| 116 | 72 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> x e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 117 | 79 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> y e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 118 |  | simp-4r |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> ( G ` x ) = ( G ` y ) ) | 
						
							| 119 |  | simplr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> z e. ( 0 ... A ) ) | 
						
							| 120 |  | simpr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> ( x ` z ) < ( y ` z ) ) | 
						
							| 121 | 112 113 3 114 115 6 7 8 116 117 118 119 120 | aks6d1c5lem2 |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) < ( y ` z ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) | 
						
							| 122 | 1 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> K e. Field ) | 
						
							| 123 | 2 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> P e. Prime ) | 
						
							| 124 | 4 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> A e. NN0 ) | 
						
							| 125 | 5 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> A < P ) | 
						
							| 126 | 79 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> y e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 127 | 72 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> x e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 128 |  | simp-4r |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> ( G ` x ) = ( G ` y ) ) | 
						
							| 129 | 128 | eqcomd |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> ( G ` y ) = ( G ` x ) ) | 
						
							| 130 |  | simplr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> z e. ( 0 ... A ) ) | 
						
							| 131 |  | simpr |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> ( y ` z ) < ( x ` z ) ) | 
						
							| 132 | 122 123 3 124 125 6 7 8 126 127 129 130 131 | aks6d1c5lem2 |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( y ` z ) < ( x ` z ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) | 
						
							| 133 | 121 132 | jaodan |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( ( x ` z ) < ( y ` z ) \/ ( y ` z ) < ( x ` z ) ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) | 
						
							| 134 | 133 | ex |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( ( ( x ` z ) < ( y ` z ) \/ ( y ` z ) < ( x ` z ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) ) | 
						
							| 135 | 111 134 | sylbid |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) -> ( ( x ` z ) =/= ( y ` z ) -> ( 0g ` K ) =/= ( 0g ` K ) ) ) | 
						
							| 136 | 135 | imp |  |-  ( ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ z e. ( 0 ... A ) ) /\ ( x ` z ) =/= ( y ` z ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) | 
						
							| 137 | 102 136 | syl |  |-  ( ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) /\ ( z e. ( 0 ... A ) /\ ( x ` z ) =/= ( y ` z ) ) ) -> ( 0g ` K ) =/= ( 0g ` K ) ) | 
						
							| 138 | 98 137 | rexlimddv |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> ( 0g ` K ) =/= ( 0g ` K ) ) | 
						
							| 139 | 138 | neneqd |  |-  ( ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) /\ x =/= y ) -> -. ( 0g ` K ) = ( 0g ` K ) ) | 
						
							| 140 | 69 139 | pm2.65da |  |-  ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) -> -. x =/= y ) | 
						
							| 141 |  | df-ne |  |-  ( x =/= y <-> -. x = y ) | 
						
							| 142 | 141 | notbii |  |-  ( -. x =/= y <-> -. -. x = y ) | 
						
							| 143 | 140 142 | sylib |  |-  ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) -> -. -. x = y ) | 
						
							| 144 |  | notnotb |  |-  ( x = y <-> -. -. x = y ) | 
						
							| 145 | 143 144 | sylibr |  |-  ( ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) /\ ( G ` x ) = ( G ` y ) ) -> x = y ) | 
						
							| 146 | 145 | ex |  |-  ( ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) /\ y e. ( NN0 ^m ( 0 ... A ) ) ) -> ( ( G ` x ) = ( G ` y ) -> x = y ) ) | 
						
							| 147 | 146 | ralrimiva |  |-  ( ( ph /\ x e. ( NN0 ^m ( 0 ... A ) ) ) -> A. y e. ( NN0 ^m ( 0 ... A ) ) ( ( G ` x ) = ( G ` y ) -> x = y ) ) | 
						
							| 148 | 147 | ralrimiva |  |-  ( ph -> A. x e. ( NN0 ^m ( 0 ... A ) ) A. y e. ( NN0 ^m ( 0 ... A ) ) ( ( G ` x ) = ( G ` y ) -> x = y ) ) | 
						
							| 149 | 68 148 | jca |  |-  ( ph -> ( G : ( NN0 ^m ( 0 ... A ) ) --> ( Base ` ( Poly1 ` K ) ) /\ A. x e. ( NN0 ^m ( 0 ... A ) ) A. y e. ( NN0 ^m ( 0 ... A ) ) ( ( G ` x ) = ( G ` y ) -> x = y ) ) ) | 
						
							| 150 |  | dff13 |  |-  ( G : ( NN0 ^m ( 0 ... A ) ) -1-1-> ( Base ` ( Poly1 ` K ) ) <-> ( G : ( NN0 ^m ( 0 ... A ) ) --> ( Base ` ( Poly1 ` K ) ) /\ A. x e. ( NN0 ^m ( 0 ... A ) ) A. y e. ( NN0 ^m ( 0 ... A ) ) ( ( G ` x ) = ( G ` y ) -> x = y ) ) ) | 
						
							| 151 | 149 150 | sylibr |  |-  ( ph -> G : ( NN0 ^m ( 0 ... A ) ) -1-1-> ( Base ` ( Poly1 ` K ) ) ) |