Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1p5.1 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
2 |
|
aks6d1p5.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
3 |
|
aks6d1c5.3 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
4 |
|
aks6d1c5.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
5 |
|
aks6d1c5.5 |
⊢ ( 𝜑 → 𝐴 < 𝑃 ) |
6 |
|
aks6d1c5.6 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
7 |
|
aks6d1c5.7 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
8 |
|
aks6d1c5.8 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
10 |
1
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
11 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
12 |
11
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
13 |
10 12
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
14 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) = ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) |
15 |
14
|
crngmgp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CRing → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
16 |
13 15
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
18 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 0 ... 𝐴 ) ∈ Fin ) |
19 |
17
|
cmnmndd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
21 |
|
nn0ex |
⊢ ℕ0 ∈ V |
22 |
21
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
23 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ V ) |
24 |
22 23
|
elmapd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
25 |
24
|
biimpd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) → 𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
26 |
25
|
imp |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
27 |
26
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑔 ‘ 𝑖 ) ∈ ℕ0 ) |
28 |
13
|
crngringd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
29 |
28
|
ringcmnd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CMnd ) |
30 |
|
cmnmnd |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CMnd → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
34 |
10
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐾 ∈ Ring ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝐾 ∈ Ring ) |
37 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
38 |
6 11 37
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
39 |
36 38
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
40 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
41 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝐴 ) → 𝑖 ∈ ℤ ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑖 ∈ ℤ ) |
43 |
40 42
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ℤ ) ) |
44 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
45 |
44
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
46 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
47 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
48 |
46 47
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
49 |
45 48
|
syl |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
50 |
35 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
51 |
50
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ℤ ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) |
52 |
43 51
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) |
53 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) = ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) |
54 |
11 53 47 37
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
55 |
36 52 54
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
56 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ ( Poly1 ‘ 𝐾 ) ) |
57 |
37 56
|
mndcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
58 |
33 39 55 57
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
59 |
14 37
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
60 |
59
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
61 |
58 60
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
62 |
9 7 20 27 61
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
63 |
62
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ∀ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
64 |
9 17 18 63
|
gsummptcl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
65 |
59
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
66 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
67 |
64 66
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
68 |
67 8
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
69 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) ) |
70 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ≠ 𝑦 ) |
71 |
70
|
neneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ¬ 𝑥 = 𝑦 ) |
72 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
73 |
21
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ℕ0 ∈ V ) |
74 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 0 ... 𝐴 ) ∈ V ) |
75 |
73 74
|
elmapd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
76 |
72 75
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
77 |
|
ffn |
⊢ ( 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 → 𝑥 Fn ( 0 ... 𝐴 ) ) |
78 |
76 77
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 Fn ( 0 ... 𝐴 ) ) |
79 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
80 |
73 74
|
elmapd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
81 |
79 80
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
82 |
|
ffn |
⊢ ( 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 → 𝑦 Fn ( 0 ... 𝐴 ) ) |
83 |
81 82
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 Fn ( 0 ... 𝐴 ) ) |
84 |
|
eqfnfv2 |
⊢ ( ( 𝑥 Fn ( 0 ... 𝐴 ) ∧ 𝑦 Fn ( 0 ... 𝐴 ) ) → ( 𝑥 = 𝑦 ↔ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) ) ) |
85 |
78 83 84
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 = 𝑦 ↔ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) ) ) |
86 |
85
|
notbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ¬ 𝑥 = 𝑦 ↔ ¬ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) ) ) |
87 |
86
|
biimpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ¬ 𝑥 = 𝑦 → ¬ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) ) ) |
88 |
71 87
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ¬ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) ) |
89 |
|
ianor |
⊢ ( ¬ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) ↔ ( ¬ ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∨ ¬ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) ) |
90 |
88 89
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( ¬ ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∨ ¬ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) ) |
91 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ) |
92 |
91
|
notnotd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ¬ ¬ ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ) |
93 |
90 92
|
orcnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ¬ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
94 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ ( 0 ... 𝐴 ) ¬ ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ↔ ¬ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
95 |
93 94
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑧 ∈ ( 0 ... 𝐴 ) ¬ ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
96 |
|
df-ne |
⊢ ( ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ↔ ¬ ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
97 |
96
|
rexbii |
⊢ ( ∃ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ↔ ∃ 𝑧 ∈ ( 0 ... 𝐴 ) ¬ ( 𝑥 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
98 |
95 97
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ) |
99 |
|
simpl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑧 ∈ ( 0 ... 𝐴 ) ∧ ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ) ) → ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) |
100 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑧 ∈ ( 0 ... 𝐴 ) ∧ ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ) ) → 𝑧 ∈ ( 0 ... 𝐴 ) ) |
101 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑧 ∈ ( 0 ... 𝐴 ) ∧ ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ) ) → ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ) |
102 |
99 100 101
|
jca31 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑧 ∈ ( 0 ... 𝐴 ) ∧ ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ) ) → ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ) ) |
103 |
75
|
biimpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) → 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
104 |
72 103
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
105 |
104
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 ) |
106 |
105
|
nn0red |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( 𝑥 ‘ 𝑧 ) ∈ ℝ ) |
107 |
80
|
biimpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) → 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
108 |
79 107
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
109 |
108
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( 𝑦 ‘ 𝑧 ) ∈ ℕ0 ) |
110 |
109
|
nn0red |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( 𝑦 ‘ 𝑧 ) ∈ ℝ ) |
111 |
106 110
|
lttri2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ↔ ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∨ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) ) ) |
112 |
1
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) → 𝐾 ∈ Field ) |
113 |
2
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) → 𝑃 ∈ ℙ ) |
114 |
4
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) → 𝐴 ∈ ℕ0 ) |
115 |
5
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) → 𝐴 < 𝑃 ) |
116 |
72
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) → 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
117 |
79
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) → 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
118 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
119 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) → 𝑧 ∈ ( 0 ... 𝐴 ) ) |
120 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) → ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) |
121 |
112 113 3 114 115 6 7 8 116 117 118 119 120
|
aks6d1c5lem2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) → ( 0g ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) |
122 |
1
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → 𝐾 ∈ Field ) |
123 |
2
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → 𝑃 ∈ ℙ ) |
124 |
4
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → 𝐴 ∈ ℕ0 ) |
125 |
5
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → 𝐴 < 𝑃 ) |
126 |
79
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
127 |
72
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
128 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
129 |
128
|
eqcomd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) |
130 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → 𝑧 ∈ ( 0 ... 𝐴 ) ) |
131 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) |
132 |
122 123 3 124 125 6 7 8 126 127 129 130 131
|
aks6d1c5lem2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → ( 0g ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) |
133 |
121 132
|
jaodan |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∨ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) ) → ( 0g ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) |
134 |
133
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∨ ( 𝑦 ‘ 𝑧 ) < ( 𝑥 ‘ 𝑧 ) ) → ( 0g ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) ) |
135 |
111 134
|
sylbid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) → ( 0g ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) ) |
136 |
135
|
imp |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ) → ( 0g ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) |
137 |
102 136
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑧 ∈ ( 0 ... 𝐴 ) ∧ ( 𝑥 ‘ 𝑧 ) ≠ ( 𝑦 ‘ 𝑧 ) ) ) → ( 0g ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) |
138 |
98 137
|
rexlimddv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( 0g ‘ 𝐾 ) ≠ ( 0g ‘ 𝐾 ) ) |
139 |
138
|
neneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) → ¬ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) ) |
140 |
69 139
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) → ¬ 𝑥 ≠ 𝑦 ) |
141 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) |
142 |
141
|
notbii |
⊢ ( ¬ 𝑥 ≠ 𝑦 ↔ ¬ ¬ 𝑥 = 𝑦 ) |
143 |
140 142
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) → ¬ ¬ 𝑥 = 𝑦 ) |
144 |
|
notnotb |
⊢ ( 𝑥 = 𝑦 ↔ ¬ ¬ 𝑥 = 𝑦 ) |
145 |
143 144
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
146 |
145
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
147 |
146
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ∀ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
148 |
147
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∀ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
149 |
68 148
|
jca |
⊢ ( 𝜑 → ( 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∀ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
150 |
|
dff13 |
⊢ ( 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∀ 𝑦 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
151 |
149 150
|
sylibr |
⊢ ( 𝜑 → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |