Metamath Proof Explorer


Theorem aks6d1c5

Description: Claim 5 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf . The mapping defined by G is injective. (Contributed by metakunt, 5-May-2025)

Ref Expression
Hypotheses aks6d1p5.1 ( 𝜑𝐾 ∈ Field )
aks6d1p5.2 ( 𝜑𝑃 ∈ ℙ )
aks6d1c5.3 𝑃 = ( chr ‘ 𝐾 )
aks6d1c5.4 ( 𝜑𝐴 ∈ ℕ0 )
aks6d1c5.5 ( 𝜑𝐴 < 𝑃 )
aks6d1c5.6 𝑋 = ( var1𝐾 )
aks6d1c5.7 = ( .g ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) )
aks6d1c5.8 𝐺 = ( 𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔𝑖 ) ( 𝑋 ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )
Assertion aks6d1c5 ( 𝜑𝐺 : ( ℕ0m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 aks6d1p5.1 ( 𝜑𝐾 ∈ Field )
2 aks6d1p5.2 ( 𝜑𝑃 ∈ ℙ )
3 aks6d1c5.3 𝑃 = ( chr ‘ 𝐾 )
4 aks6d1c5.4 ( 𝜑𝐴 ∈ ℕ0 )
5 aks6d1c5.5 ( 𝜑𝐴 < 𝑃 )
6 aks6d1c5.6 𝑋 = ( var1𝐾 )
7 aks6d1c5.7 = ( .g ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) )
8 aks6d1c5.8 𝐺 = ( 𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔𝑖 ) ( 𝑋 ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )
9 eqid ( Base ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) )
10 1 fldcrngd ( 𝜑𝐾 ∈ CRing )
11 eqid ( Poly1𝐾 ) = ( Poly1𝐾 )
12 11 ply1crng ( 𝐾 ∈ CRing → ( Poly1𝐾 ) ∈ CRing )
13 10 12 syl ( 𝜑 → ( Poly1𝐾 ) ∈ CRing )
14 eqid ( mulGrp ‘ ( Poly1𝐾 ) ) = ( mulGrp ‘ ( Poly1𝐾 ) )
15 14 crngmgp ( ( Poly1𝐾 ) ∈ CRing → ( mulGrp ‘ ( Poly1𝐾 ) ) ∈ CMnd )
16 13 15 syl ( 𝜑 → ( mulGrp ‘ ( Poly1𝐾 ) ) ∈ CMnd )
17 16 adantr ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ( mulGrp ‘ ( Poly1𝐾 ) ) ∈ CMnd )
18 fzfid ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ( 0 ... 𝐴 ) ∈ Fin )
19 17 cmnmndd ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ( mulGrp ‘ ( Poly1𝐾 ) ) ∈ Mnd )
20 19 adantr ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( mulGrp ‘ ( Poly1𝐾 ) ) ∈ Mnd )
21 nn0ex 0 ∈ V
22 21 a1i ( 𝜑 → ℕ0 ∈ V )
23 ovexd ( 𝜑 → ( 0 ... 𝐴 ) ∈ V )
24 22 23 elmapd ( 𝜑 → ( 𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ↔ 𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) )
25 24 biimpd ( 𝜑 → ( 𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) → 𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) )
26 25 imp ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → 𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 )
27 26 ffvelcdmda ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑔𝑖 ) ∈ ℕ0 )
28 13 crngringd ( 𝜑 → ( Poly1𝐾 ) ∈ Ring )
29 28 ringcmnd ( 𝜑 → ( Poly1𝐾 ) ∈ CMnd )
30 cmnmnd ( ( Poly1𝐾 ) ∈ CMnd → ( Poly1𝐾 ) ∈ Mnd )
31 29 30 syl ( 𝜑 → ( Poly1𝐾 ) ∈ Mnd )
32 31 adantr ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ( Poly1𝐾 ) ∈ Mnd )
33 32 adantr ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( Poly1𝐾 ) ∈ Mnd )
34 10 crngringd ( 𝜑𝐾 ∈ Ring )
35 34 adantr ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → 𝐾 ∈ Ring )
36 35 adantr ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝐾 ∈ Ring )
37 eqid ( Base ‘ ( Poly1𝐾 ) ) = ( Base ‘ ( Poly1𝐾 ) )
38 6 11 37 vr1cl ( 𝐾 ∈ Ring → 𝑋 ∈ ( Base ‘ ( Poly1𝐾 ) ) )
39 36 38 syl ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑋 ∈ ( Base ‘ ( Poly1𝐾 ) ) )
40 simpl ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) )
41 elfzelz ( 𝑖 ∈ ( 0 ... 𝐴 ) → 𝑖 ∈ ℤ )
42 41 adantl ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑖 ∈ ℤ )
43 40 42 jca ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ℤ ) )
44 eqid ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 )
45 44 zrhrhm ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) )
46 zringbas ℤ = ( Base ‘ ℤring )
47 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
48 46 47 rhmf ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) )
49 45 48 syl ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) )
50 35 49 syl ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) )
51 50 ffvelcdmda ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ℤ ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) )
52 43 51 syl ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) )
53 eqid ( algSc ‘ ( Poly1𝐾 ) ) = ( algSc ‘ ( Poly1𝐾 ) )
54 11 53 47 37 ply1sclcl ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1𝐾 ) ) )
55 36 52 54 syl2anc ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1𝐾 ) ) )
56 eqid ( +g ‘ ( Poly1𝐾 ) ) = ( +g ‘ ( Poly1𝐾 ) )
57 37 56 mndcl ( ( ( Poly1𝐾 ) ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ ( Poly1𝐾 ) ) ∧ ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1𝐾 ) ) ) → ( 𝑋 ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1𝐾 ) ) )
58 33 39 55 57 syl3anc ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑋 ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1𝐾 ) ) )
59 14 37 mgpbas ( Base ‘ ( Poly1𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) )
60 59 a1i ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( Base ‘ ( Poly1𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) ) )
61 58 60 eleqtrd ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑋 ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) ) )
62 9 7 20 27 61 mulgnn0cld ( ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑔𝑖 ) ( 𝑋 ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) ) )
63 62 ralrimiva ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ∀ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑔𝑖 ) ( 𝑋 ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) ) )
64 9 17 18 63 gsummptcl ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ( ( mulGrp ‘ ( Poly1𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔𝑖 ) ( 𝑋 ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) ) )
65 59 eqcomi ( Base ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) ) = ( Base ‘ ( Poly1𝐾 ) )
66 65 a1i ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ( Base ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) ) = ( Base ‘ ( Poly1𝐾 ) ) )
67 64 66 eleqtrd ( ( 𝜑𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ( ( mulGrp ‘ ( Poly1𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔𝑖 ) ( 𝑋 ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1𝐾 ) ) )
68 67 8 fmptd ( 𝜑𝐺 : ( ℕ0m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1𝐾 ) ) )
69 eqidd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( 0g𝐾 ) = ( 0g𝐾 ) )
70 simpr ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → 𝑥𝑦 )
71 70 neneqd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ¬ 𝑥 = 𝑦 )
72 simp-4r ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → 𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) )
73 21 a1i ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ℕ0 ∈ V )
74 ovexd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( 0 ... 𝐴 ) ∈ V )
75 73 74 elmapd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( 𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ↔ 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) )
76 72 75 mpbid ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 )
77 ffn ( 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0𝑥 Fn ( 0 ... 𝐴 ) )
78 76 77 syl ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → 𝑥 Fn ( 0 ... 𝐴 ) )
79 simpllr ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) )
80 73 74 elmapd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ↔ 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) )
81 79 80 mpbid ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 )
82 ffn ( 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0𝑦 Fn ( 0 ... 𝐴 ) )
83 81 82 syl ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → 𝑦 Fn ( 0 ... 𝐴 ) )
84 eqfnfv2 ( ( 𝑥 Fn ( 0 ... 𝐴 ) ∧ 𝑦 Fn ( 0 ... 𝐴 ) ) → ( 𝑥 = 𝑦 ↔ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ) ) )
85 78 83 84 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( 𝑥 = 𝑦 ↔ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ) ) )
86 85 notbid ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( ¬ 𝑥 = 𝑦 ↔ ¬ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ) ) )
87 86 biimpd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( ¬ 𝑥 = 𝑦 → ¬ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ) ) )
88 71 87 mpd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ¬ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ) )
89 ianor ( ¬ ( ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∧ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ) ↔ ( ¬ ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∨ ¬ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ) )
90 88 89 sylib ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( ¬ ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) ∨ ¬ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ) )
91 eqidd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) )
92 91 notnotd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ¬ ¬ ( 0 ... 𝐴 ) = ( 0 ... 𝐴 ) )
93 90 92 orcnd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ¬ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) = ( 𝑦𝑧 ) )
94 rexnal ( ∃ 𝑧 ∈ ( 0 ... 𝐴 ) ¬ ( 𝑥𝑧 ) = ( 𝑦𝑧 ) ↔ ¬ ∀ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) = ( 𝑦𝑧 ) )
95 93 94 sylibr ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ∃ 𝑧 ∈ ( 0 ... 𝐴 ) ¬ ( 𝑥𝑧 ) = ( 𝑦𝑧 ) )
96 df-ne ( ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) ↔ ¬ ( 𝑥𝑧 ) = ( 𝑦𝑧 ) )
97 96 rexbii ( ∃ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) ↔ ∃ 𝑧 ∈ ( 0 ... 𝐴 ) ¬ ( 𝑥𝑧 ) = ( 𝑦𝑧 ) )
98 95 97 sylibr ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ∃ 𝑧 ∈ ( 0 ... 𝐴 ) ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) )
99 simpl ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ ( 𝑧 ∈ ( 0 ... 𝐴 ) ∧ ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) ) ) → ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) )
100 simprl ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ ( 𝑧 ∈ ( 0 ... 𝐴 ) ∧ ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) ) ) → 𝑧 ∈ ( 0 ... 𝐴 ) )
101 simprr ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ ( 𝑧 ∈ ( 0 ... 𝐴 ) ∧ ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) ) ) → ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) )
102 99 100 101 jca31 ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ ( 𝑧 ∈ ( 0 ... 𝐴 ) ∧ ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) ) ) → ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) ) )
103 75 biimpd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( 𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) → 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) )
104 72 103 mpd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 )
105 104 ffvelcdmda ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( 𝑥𝑧 ) ∈ ℕ0 )
106 105 nn0red ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( 𝑥𝑧 ) ∈ ℝ )
107 80 biimpd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) → 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) )
108 79 107 mpd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 )
109 108 ffvelcdmda ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( 𝑦𝑧 ) ∈ ℕ0 )
110 109 nn0red ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( 𝑦𝑧 ) ∈ ℝ )
111 106 110 lttri2d ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) ↔ ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∨ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) ) )
112 1 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ) → 𝐾 ∈ Field )
113 2 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ) → 𝑃 ∈ ℙ )
114 4 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ) → 𝐴 ∈ ℕ0 )
115 5 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ) → 𝐴 < 𝑃 )
116 72 ad2antrr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ) → 𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) )
117 79 ad2antrr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ) → 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) )
118 simp-4r ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ) → ( 𝐺𝑥 ) = ( 𝐺𝑦 ) )
119 simplr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ) → 𝑧 ∈ ( 0 ... 𝐴 ) )
120 simpr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ) → ( 𝑥𝑧 ) < ( 𝑦𝑧 ) )
121 112 113 3 114 115 6 7 8 116 117 118 119 120 aks6d1c5lem2 ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ) → ( 0g𝐾 ) ≠ ( 0g𝐾 ) )
122 1 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → 𝐾 ∈ Field )
123 2 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → 𝑃 ∈ ℙ )
124 4 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → 𝐴 ∈ ℕ0 )
125 5 ad6antr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → 𝐴 < 𝑃 )
126 79 ad2antrr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) )
127 72 ad2antrr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → 𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) )
128 simp-4r ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → ( 𝐺𝑥 ) = ( 𝐺𝑦 ) )
129 128 eqcomd ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → ( 𝐺𝑦 ) = ( 𝐺𝑥 ) )
130 simplr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → 𝑧 ∈ ( 0 ... 𝐴 ) )
131 simpr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → ( 𝑦𝑧 ) < ( 𝑥𝑧 ) )
132 122 123 3 124 125 6 7 8 126 127 129 130 131 aks6d1c5lem2 ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → ( 0g𝐾 ) ≠ ( 0g𝐾 ) )
133 121 132 jaodan ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∨ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) ) → ( 0g𝐾 ) ≠ ( 0g𝐾 ) )
134 133 ex ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∨ ( 𝑦𝑧 ) < ( 𝑥𝑧 ) ) → ( 0g𝐾 ) ≠ ( 0g𝐾 ) ) )
135 111 134 sylbid ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) → ( 0g𝐾 ) ≠ ( 0g𝐾 ) ) )
136 135 imp ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ 𝑧 ∈ ( 0 ... 𝐴 ) ) ∧ ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) ) → ( 0g𝐾 ) ≠ ( 0g𝐾 ) )
137 102 136 syl ( ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) ∧ ( 𝑧 ∈ ( 0 ... 𝐴 ) ∧ ( 𝑥𝑧 ) ≠ ( 𝑦𝑧 ) ) ) → ( 0g𝐾 ) ≠ ( 0g𝐾 ) )
138 98 137 rexlimddv ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ( 0g𝐾 ) ≠ ( 0g𝐾 ) )
139 138 neneqd ( ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) ∧ 𝑥𝑦 ) → ¬ ( 0g𝐾 ) = ( 0g𝐾 ) )
140 69 139 pm2.65da ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) → ¬ 𝑥𝑦 )
141 df-ne ( 𝑥𝑦 ↔ ¬ 𝑥 = 𝑦 )
142 141 notbii ( ¬ 𝑥𝑦 ↔ ¬ ¬ 𝑥 = 𝑦 )
143 140 142 sylib ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) → ¬ ¬ 𝑥 = 𝑦 )
144 notnotb ( 𝑥 = 𝑦 ↔ ¬ ¬ 𝑥 = 𝑦 )
145 143 144 sylibr ( ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ) → 𝑥 = 𝑦 )
146 145 ex ( ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) ∧ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 ) )
147 146 ralrimiva ( ( 𝜑𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ) → ∀ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 ) )
148 147 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ∀ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 ) )
149 68 148 jca ( 𝜑 → ( 𝐺 : ( ℕ0m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1𝐾 ) ) ∧ ∀ 𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ∀ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 ) ) )
150 dff13 ( 𝐺 : ( ℕ0m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1𝐾 ) ) ↔ ( 𝐺 : ( ℕ0m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1𝐾 ) ) ∧ ∀ 𝑥 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ∀ 𝑦 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 ) ) )
151 149 150 sylibr ( 𝜑𝐺 : ( ℕ0m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1𝐾 ) ) )