| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1p5.1 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 2 |  | aks6d1p5.2 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | aks6d1c5.3 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 4 |  | aks6d1c5.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 5 |  | aks6d1c5.5 | ⊢ ( 𝜑  →  𝐴  <  𝑃 ) | 
						
							| 6 |  | aks6d1c5.6 | ⊢ 𝑋  =  ( var1 ‘ 𝐾 ) | 
						
							| 7 |  | aks6d1c5.7 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 8 |  | aks6d1c5.8 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 10 | 1 | fldcrngd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 11 |  | eqid | ⊢ ( Poly1 ‘ 𝐾 )  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 12 | 11 | ply1crng | ⊢ ( 𝐾  ∈  CRing  →  ( Poly1 ‘ 𝐾 )  ∈  CRing ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  CRing ) | 
						
							| 14 |  | eqid | ⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  =  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 15 | 14 | crngmgp | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  CRing  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  CMnd ) | 
						
							| 16 | 13 15 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  CMnd ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  CMnd ) | 
						
							| 18 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 0 ... 𝐴 )  ∈  Fin ) | 
						
							| 19 | 17 | cmnmndd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  Mnd ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  Mnd ) | 
						
							| 21 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 23 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ∈  V ) | 
						
							| 24 | 22 23 | elmapd | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 25 | 24 | biimpd | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  →  𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑔 ‘ 𝑖 )  ∈  ℕ0 ) | 
						
							| 28 | 13 | crngringd | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Ring ) | 
						
							| 29 | 28 | ringcmnd | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 30 |  | cmnmnd | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  CMnd  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 34 | 10 | crngringd | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝐾  ∈  Ring ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝐾  ∈  Ring ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 38 | 6 11 37 | vr1cl | ⊢ ( 𝐾  ∈  Ring  →  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 39 | 36 38 | syl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 40 |  | simpl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) | 
						
							| 41 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 0 ... 𝐴 )  →  𝑖  ∈  ℤ ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 43 | 40 42 | jca | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ℤ ) ) | 
						
							| 44 |  | eqid | ⊢ ( ℤRHom ‘ 𝐾 )  =  ( ℤRHom ‘ 𝐾 ) | 
						
							| 45 | 44 | zrhrhm | ⊢ ( 𝐾  ∈  Ring  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 ) ) | 
						
							| 46 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 47 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 48 | 46 47 | rhmf | ⊢ ( ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 )  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 49 | 45 48 | syl | ⊢ ( 𝐾  ∈  Ring  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 50 | 35 49 | syl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 51 | 50 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ℤ )  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 52 | 43 51 | syl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 53 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) )  =  ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 54 | 11 53 47 37 | ply1sclcl | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 55 | 36 52 54 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 56 |  | eqid | ⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( +g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 57 | 37 56 | mndcl | ⊢ ( ( ( Poly1 ‘ 𝐾 )  ∈  Mnd  ∧  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 58 | 33 39 55 57 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 59 | 14 37 | mgpbas | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 60 | 59 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 61 | 58 60 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 62 | 9 7 20 27 61 | mulgnn0cld | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 63 | 62 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ∀ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 64 | 9 17 18 63 | gsummptcl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 65 | 59 | eqcomi | ⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 66 | 65 | a1i | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 67 | 64 66 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 68 | 67 8 | fmptd | ⊢ ( 𝜑  →  𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 69 |  | eqidd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 70 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑥  ≠  𝑦 ) | 
						
							| 71 | 70 | neneqd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ¬  𝑥  =  𝑦 ) | 
						
							| 72 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 73 | 21 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ℕ0  ∈  V ) | 
						
							| 74 |  | ovexd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 0 ... 𝐴 )  ∈  V ) | 
						
							| 75 | 73 74 | elmapd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 76 | 72 75 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 77 |  | ffn | ⊢ ( 𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0  →  𝑥  Fn  ( 0 ... 𝐴 ) ) | 
						
							| 78 | 76 77 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑥  Fn  ( 0 ... 𝐴 ) ) | 
						
							| 79 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 80 | 73 74 | elmapd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 81 | 79 80 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 82 |  | ffn | ⊢ ( 𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0  →  𝑦  Fn  ( 0 ... 𝐴 ) ) | 
						
							| 83 | 81 82 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑦  Fn  ( 0 ... 𝐴 ) ) | 
						
							| 84 |  | eqfnfv2 | ⊢ ( ( 𝑥  Fn  ( 0 ... 𝐴 )  ∧  𝑦  Fn  ( 0 ... 𝐴 ) )  →  ( 𝑥  =  𝑦  ↔  ( ( 0 ... 𝐴 )  =  ( 0 ... 𝐴 )  ∧  ∀ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) ) ) | 
						
							| 85 | 78 83 84 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑥  =  𝑦  ↔  ( ( 0 ... 𝐴 )  =  ( 0 ... 𝐴 )  ∧  ∀ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) ) ) | 
						
							| 86 | 85 | notbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ¬  𝑥  =  𝑦  ↔  ¬  ( ( 0 ... 𝐴 )  =  ( 0 ... 𝐴 )  ∧  ∀ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) ) ) | 
						
							| 87 | 86 | biimpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ¬  𝑥  =  𝑦  →  ¬  ( ( 0 ... 𝐴 )  =  ( 0 ... 𝐴 )  ∧  ∀ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) ) ) | 
						
							| 88 | 71 87 | mpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ¬  ( ( 0 ... 𝐴 )  =  ( 0 ... 𝐴 )  ∧  ∀ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) ) | 
						
							| 89 |  | ianor | ⊢ ( ¬  ( ( 0 ... 𝐴 )  =  ( 0 ... 𝐴 )  ∧  ∀ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) )  ↔  ( ¬  ( 0 ... 𝐴 )  =  ( 0 ... 𝐴 )  ∨  ¬  ∀ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) ) | 
						
							| 90 | 88 89 | sylib | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( ¬  ( 0 ... 𝐴 )  =  ( 0 ... 𝐴 )  ∨  ¬  ∀ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) ) | 
						
							| 91 |  | eqidd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 0 ... 𝐴 )  =  ( 0 ... 𝐴 ) ) | 
						
							| 92 | 91 | notnotd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ¬  ¬  ( 0 ... 𝐴 )  =  ( 0 ... 𝐴 ) ) | 
						
							| 93 | 90 92 | orcnd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ¬  ∀ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) | 
						
							| 94 |  | rexnal | ⊢ ( ∃ 𝑧  ∈  ( 0 ... 𝐴 ) ¬  ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 )  ↔  ¬  ∀ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) | 
						
							| 95 | 93 94 | sylibr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ∃ 𝑧  ∈  ( 0 ... 𝐴 ) ¬  ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) | 
						
							| 96 |  | df-ne | ⊢ ( ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 )  ↔  ¬  ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) | 
						
							| 97 | 96 | rexbii | ⊢ ( ∃ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 )  ↔  ∃ 𝑧  ∈  ( 0 ... 𝐴 ) ¬  ( 𝑥 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑧 ) ) | 
						
							| 98 | 95 97 | sylibr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ∃ 𝑧  ∈  ( 0 ... 𝐴 ) ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 ) ) | 
						
							| 99 |  | simpl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  ( 𝑧  ∈  ( 0 ... 𝐴 )  ∧  ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 ) ) )  →  ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 100 |  | simprl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  ( 𝑧  ∈  ( 0 ... 𝐴 )  ∧  ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 ) ) )  →  𝑧  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 101 |  | simprr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  ( 𝑧  ∈  ( 0 ... 𝐴 )  ∧  ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 ) ) )  →  ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 ) ) | 
						
							| 102 | 99 100 101 | jca31 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  ( 𝑧  ∈  ( 0 ... 𝐴 )  ∧  ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 ) ) )  →  ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 ) ) ) | 
						
							| 103 | 75 | biimpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  →  𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 104 | 72 103 | mpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑥 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 105 | 104 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑥 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 106 | 105 | nn0red | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑥 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 107 | 80 | biimpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  →  𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 108 | 79 107 | mpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  𝑦 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 109 | 108 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑦 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 110 | 109 | nn0red | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑦 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 111 | 106 110 | lttri2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 )  ↔  ( ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 )  ∨  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) ) ) ) | 
						
							| 112 | 1 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) )  →  𝐾  ∈  Field ) | 
						
							| 113 | 2 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 114 | 4 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 115 | 5 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) )  →  𝐴  <  𝑃 ) | 
						
							| 116 | 72 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) )  →  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 117 | 79 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) )  →  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 118 |  | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 119 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) )  →  𝑧  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 120 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) )  →  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) ) | 
						
							| 121 | 112 113 3 114 115 6 7 8 116 117 118 119 120 | aks6d1c5lem2 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 ) )  →  ( 0g ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 122 | 1 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  𝐾  ∈  Field ) | 
						
							| 123 | 2 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 124 | 4 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 125 | 5 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  𝐴  <  𝑃 ) | 
						
							| 126 | 79 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 127 | 72 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 128 |  | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 129 | 128 | eqcomd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 130 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  𝑧  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 131 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) ) | 
						
							| 132 | 122 123 3 124 125 6 7 8 126 127 129 130 131 | aks6d1c5lem2 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  ( 0g ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 133 | 121 132 | jaodan | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 )  ∨  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) ) )  →  ( 0g ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 134 | 133 | ex | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  →  ( ( ( 𝑥 ‘ 𝑧 )  <  ( 𝑦 ‘ 𝑧 )  ∨  ( 𝑦 ‘ 𝑧 )  <  ( 𝑥 ‘ 𝑧 ) )  →  ( 0g ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 135 | 111 134 | sylbid | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 )  →  ( 0g ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 136 | 135 | imp | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  𝑧  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 ) )  →  ( 0g ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 137 | 102 136 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  ∧  ( 𝑧  ∈  ( 0 ... 𝐴 )  ∧  ( 𝑥 ‘ 𝑧 )  ≠  ( 𝑦 ‘ 𝑧 ) ) )  →  ( 0g ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 138 | 98 137 | rexlimddv | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ( 0g ‘ 𝐾 )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 139 | 138 | neneqd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 )  →  ¬  ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 140 | 69 139 | pm2.65da | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  →  ¬  𝑥  ≠  𝑦 ) | 
						
							| 141 |  | df-ne | ⊢ ( 𝑥  ≠  𝑦  ↔  ¬  𝑥  =  𝑦 ) | 
						
							| 142 | 141 | notbii | ⊢ ( ¬  𝑥  ≠  𝑦  ↔  ¬  ¬  𝑥  =  𝑦 ) | 
						
							| 143 | 140 142 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  →  ¬  ¬  𝑥  =  𝑦 ) | 
						
							| 144 |  | notnotb | ⊢ ( 𝑥  =  𝑦  ↔  ¬  ¬  𝑥  =  𝑦 ) | 
						
							| 145 | 143 144 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 ) )  →  𝑥  =  𝑦 ) | 
						
							| 146 | 145 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 147 | 146 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ∀ 𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ( ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 148 | 147 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ∀ 𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ( ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 149 | 68 148 | jca | ⊢ ( 𝜑  →  ( 𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ∀ 𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ( ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 150 |  | dff13 | ⊢ ( 𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( 𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑥  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ∀ 𝑦  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ( ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 151 | 149 150 | sylibr | ⊢ ( 𝜑  →  𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |