Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1p5.1 |
|
2 |
|
aks6d1p5.2 |
|
3 |
|
aks6d1c5.3 |
|
4 |
|
aks6d1c5.4 |
|
5 |
|
aks6d1c5.5 |
|
6 |
|
aks6d1c5.6 |
|
7 |
|
aks6d1c5.7 |
|
8 |
|
aks6d1c5.8 |
|
9 |
|
eqid |
|
10 |
1
|
fldcrngd |
|
11 |
|
eqid |
|
12 |
11
|
ply1crng |
|
13 |
10 12
|
syl |
|
14 |
|
eqid |
|
15 |
14
|
crngmgp |
|
16 |
13 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
|
fzfid |
|
19 |
17
|
cmnmndd |
|
20 |
19
|
adantr |
|
21 |
|
nn0ex |
|
22 |
21
|
a1i |
|
23 |
|
ovexd |
|
24 |
22 23
|
elmapd |
|
25 |
24
|
biimpd |
|
26 |
25
|
imp |
|
27 |
26
|
ffvelcdmda |
|
28 |
13
|
crngringd |
|
29 |
28
|
ringcmnd |
|
30 |
|
cmnmnd |
|
31 |
29 30
|
syl |
|
32 |
31
|
adantr |
|
33 |
32
|
adantr |
|
34 |
10
|
crngringd |
|
35 |
34
|
adantr |
|
36 |
35
|
adantr |
|
37 |
|
eqid |
|
38 |
6 11 37
|
vr1cl |
|
39 |
36 38
|
syl |
|
40 |
|
simpl |
|
41 |
|
elfzelz |
|
42 |
41
|
adantl |
|
43 |
40 42
|
jca |
|
44 |
|
eqid |
|
45 |
44
|
zrhrhm |
|
46 |
|
zringbas |
|
47 |
|
eqid |
|
48 |
46 47
|
rhmf |
|
49 |
45 48
|
syl |
|
50 |
35 49
|
syl |
|
51 |
50
|
ffvelcdmda |
|
52 |
43 51
|
syl |
|
53 |
|
eqid |
|
54 |
11 53 47 37
|
ply1sclcl |
|
55 |
36 52 54
|
syl2anc |
|
56 |
|
eqid |
|
57 |
37 56
|
mndcl |
|
58 |
33 39 55 57
|
syl3anc |
|
59 |
14 37
|
mgpbas |
|
60 |
59
|
a1i |
|
61 |
58 60
|
eleqtrd |
|
62 |
9 7 20 27 61
|
mulgnn0cld |
|
63 |
62
|
ralrimiva |
|
64 |
9 17 18 63
|
gsummptcl |
|
65 |
59
|
eqcomi |
|
66 |
65
|
a1i |
|
67 |
64 66
|
eleqtrd |
|
68 |
67 8
|
fmptd |
|
69 |
|
eqidd |
|
70 |
|
simpr |
|
71 |
70
|
neneqd |
|
72 |
|
simp-4r |
|
73 |
21
|
a1i |
|
74 |
|
ovexd |
|
75 |
73 74
|
elmapd |
|
76 |
72 75
|
mpbid |
|
77 |
|
ffn |
|
78 |
76 77
|
syl |
|
79 |
|
simpllr |
|
80 |
73 74
|
elmapd |
|
81 |
79 80
|
mpbid |
|
82 |
|
ffn |
|
83 |
81 82
|
syl |
|
84 |
|
eqfnfv2 |
|
85 |
78 83 84
|
syl2anc |
|
86 |
85
|
notbid |
|
87 |
86
|
biimpd |
|
88 |
71 87
|
mpd |
|
89 |
|
ianor |
|
90 |
88 89
|
sylib |
|
91 |
|
eqidd |
|
92 |
91
|
notnotd |
|
93 |
90 92
|
orcnd |
|
94 |
|
rexnal |
|
95 |
93 94
|
sylibr |
|
96 |
|
df-ne |
|
97 |
96
|
rexbii |
|
98 |
95 97
|
sylibr |
|
99 |
|
simpl |
|
100 |
|
simprl |
|
101 |
|
simprr |
|
102 |
99 100 101
|
jca31 |
|
103 |
75
|
biimpd |
|
104 |
72 103
|
mpd |
|
105 |
104
|
ffvelcdmda |
|
106 |
105
|
nn0red |
|
107 |
80
|
biimpd |
|
108 |
79 107
|
mpd |
|
109 |
108
|
ffvelcdmda |
|
110 |
109
|
nn0red |
|
111 |
106 110
|
lttri2d |
|
112 |
1
|
ad6antr |
|
113 |
2
|
ad6antr |
|
114 |
4
|
ad6antr |
|
115 |
5
|
ad6antr |
|
116 |
72
|
ad2antrr |
|
117 |
79
|
ad2antrr |
|
118 |
|
simp-4r |
|
119 |
|
simplr |
|
120 |
|
simpr |
|
121 |
112 113 3 114 115 6 7 8 116 117 118 119 120
|
aks6d1c5lem2 |
|
122 |
1
|
ad6antr |
|
123 |
2
|
ad6antr |
|
124 |
4
|
ad6antr |
|
125 |
5
|
ad6antr |
|
126 |
79
|
ad2antrr |
|
127 |
72
|
ad2antrr |
|
128 |
|
simp-4r |
|
129 |
128
|
eqcomd |
|
130 |
|
simplr |
|
131 |
|
simpr |
|
132 |
122 123 3 124 125 6 7 8 126 127 129 130 131
|
aks6d1c5lem2 |
|
133 |
121 132
|
jaodan |
|
134 |
133
|
ex |
|
135 |
111 134
|
sylbid |
|
136 |
135
|
imp |
|
137 |
102 136
|
syl |
|
138 |
98 137
|
rexlimddv |
|
139 |
138
|
neneqd |
|
140 |
69 139
|
pm2.65da |
|
141 |
|
df-ne |
|
142 |
141
|
notbii |
|
143 |
140 142
|
sylib |
|
144 |
|
notnotb |
|
145 |
143 144
|
sylibr |
|
146 |
145
|
ex |
|
147 |
146
|
ralrimiva |
|
148 |
147
|
ralrimiva |
|
149 |
68 148
|
jca |
|
150 |
|
dff13 |
|
151 |
149 150
|
sylibr |
|