| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1p5.1 |
|
| 2 |
|
aks6d1p5.2 |
|
| 3 |
|
aks6d1c5.3 |
|
| 4 |
|
aks6d1c5.4 |
|
| 5 |
|
aks6d1c5.5 |
|
| 6 |
|
aks6d1c5.6 |
|
| 7 |
|
aks6d1c5.7 |
|
| 8 |
|
aks6d1c5.8 |
|
| 9 |
|
eqid |
|
| 10 |
1
|
fldcrngd |
|
| 11 |
|
eqid |
|
| 12 |
11
|
ply1crng |
|
| 13 |
10 12
|
syl |
|
| 14 |
|
eqid |
|
| 15 |
14
|
crngmgp |
|
| 16 |
13 15
|
syl |
|
| 17 |
16
|
adantr |
|
| 18 |
|
fzfid |
|
| 19 |
17
|
cmnmndd |
|
| 20 |
19
|
adantr |
|
| 21 |
|
nn0ex |
|
| 22 |
21
|
a1i |
|
| 23 |
|
ovexd |
|
| 24 |
22 23
|
elmapd |
|
| 25 |
24
|
biimpd |
|
| 26 |
25
|
imp |
|
| 27 |
26
|
ffvelcdmda |
|
| 28 |
13
|
crngringd |
|
| 29 |
28
|
ringcmnd |
|
| 30 |
|
cmnmnd |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
adantr |
|
| 34 |
10
|
crngringd |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
adantr |
|
| 37 |
|
eqid |
|
| 38 |
6 11 37
|
vr1cl |
|
| 39 |
36 38
|
syl |
|
| 40 |
|
simpl |
|
| 41 |
|
elfzelz |
|
| 42 |
41
|
adantl |
|
| 43 |
40 42
|
jca |
|
| 44 |
|
eqid |
|
| 45 |
44
|
zrhrhm |
|
| 46 |
|
zringbas |
|
| 47 |
|
eqid |
|
| 48 |
46 47
|
rhmf |
|
| 49 |
45 48
|
syl |
|
| 50 |
35 49
|
syl |
|
| 51 |
50
|
ffvelcdmda |
|
| 52 |
43 51
|
syl |
|
| 53 |
|
eqid |
|
| 54 |
11 53 47 37
|
ply1sclcl |
|
| 55 |
36 52 54
|
syl2anc |
|
| 56 |
|
eqid |
|
| 57 |
37 56
|
mndcl |
|
| 58 |
33 39 55 57
|
syl3anc |
|
| 59 |
14 37
|
mgpbas |
|
| 60 |
59
|
a1i |
|
| 61 |
58 60
|
eleqtrd |
|
| 62 |
9 7 20 27 61
|
mulgnn0cld |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
9 17 18 63
|
gsummptcl |
|
| 65 |
59
|
eqcomi |
|
| 66 |
65
|
a1i |
|
| 67 |
64 66
|
eleqtrd |
|
| 68 |
67 8
|
fmptd |
|
| 69 |
|
eqidd |
|
| 70 |
|
simpr |
|
| 71 |
70
|
neneqd |
|
| 72 |
|
simp-4r |
|
| 73 |
21
|
a1i |
|
| 74 |
|
ovexd |
|
| 75 |
73 74
|
elmapd |
|
| 76 |
72 75
|
mpbid |
|
| 77 |
|
ffn |
|
| 78 |
76 77
|
syl |
|
| 79 |
|
simpllr |
|
| 80 |
73 74
|
elmapd |
|
| 81 |
79 80
|
mpbid |
|
| 82 |
|
ffn |
|
| 83 |
81 82
|
syl |
|
| 84 |
|
eqfnfv2 |
|
| 85 |
78 83 84
|
syl2anc |
|
| 86 |
85
|
notbid |
|
| 87 |
86
|
biimpd |
|
| 88 |
71 87
|
mpd |
|
| 89 |
|
ianor |
|
| 90 |
88 89
|
sylib |
|
| 91 |
|
eqidd |
|
| 92 |
91
|
notnotd |
|
| 93 |
90 92
|
orcnd |
|
| 94 |
|
rexnal |
|
| 95 |
93 94
|
sylibr |
|
| 96 |
|
df-ne |
|
| 97 |
96
|
rexbii |
|
| 98 |
95 97
|
sylibr |
|
| 99 |
|
simpl |
|
| 100 |
|
simprl |
|
| 101 |
|
simprr |
|
| 102 |
99 100 101
|
jca31 |
|
| 103 |
75
|
biimpd |
|
| 104 |
72 103
|
mpd |
|
| 105 |
104
|
ffvelcdmda |
|
| 106 |
105
|
nn0red |
|
| 107 |
80
|
biimpd |
|
| 108 |
79 107
|
mpd |
|
| 109 |
108
|
ffvelcdmda |
|
| 110 |
109
|
nn0red |
|
| 111 |
106 110
|
lttri2d |
|
| 112 |
1
|
ad6antr |
|
| 113 |
2
|
ad6antr |
|
| 114 |
4
|
ad6antr |
|
| 115 |
5
|
ad6antr |
|
| 116 |
72
|
ad2antrr |
|
| 117 |
79
|
ad2antrr |
|
| 118 |
|
simp-4r |
|
| 119 |
|
simplr |
|
| 120 |
|
simpr |
|
| 121 |
112 113 3 114 115 6 7 8 116 117 118 119 120
|
aks6d1c5lem2 |
|
| 122 |
1
|
ad6antr |
|
| 123 |
2
|
ad6antr |
|
| 124 |
4
|
ad6antr |
|
| 125 |
5
|
ad6antr |
|
| 126 |
79
|
ad2antrr |
|
| 127 |
72
|
ad2antrr |
|
| 128 |
|
simp-4r |
|
| 129 |
128
|
eqcomd |
|
| 130 |
|
simplr |
|
| 131 |
|
simpr |
|
| 132 |
122 123 3 124 125 6 7 8 126 127 129 130 131
|
aks6d1c5lem2 |
|
| 133 |
121 132
|
jaodan |
|
| 134 |
133
|
ex |
|
| 135 |
111 134
|
sylbid |
|
| 136 |
135
|
imp |
|
| 137 |
102 136
|
syl |
|
| 138 |
98 137
|
rexlimddv |
|
| 139 |
138
|
neneqd |
|
| 140 |
69 139
|
pm2.65da |
|
| 141 |
|
df-ne |
|
| 142 |
141
|
notbii |
|
| 143 |
140 142
|
sylib |
|
| 144 |
|
notnotb |
|
| 145 |
143 144
|
sylibr |
|
| 146 |
145
|
ex |
|
| 147 |
146
|
ralrimiva |
|
| 148 |
147
|
ralrimiva |
|
| 149 |
68 148
|
jca |
|
| 150 |
|
dff13 |
|
| 151 |
149 150
|
sylibr |
|