Metamath Proof Explorer


Theorem aks6d1c5lem2

Description: Lemma for Claim 5, contradiction of different evaluations that map to the same. (Contributed by metakunt, 5-May-2025)

Ref Expression
Hypotheses aks6d1p5.1 φ K Field
aks6d1p5.2 φ P
aks6d1c5.3 P = chr K
aks6d1c5.4 φ A 0
aks6d1c5.5 φ A < P
aks6d1c5.6 X = var 1 K
aks6d1c5.7 × ˙ = mulGrp Poly 1 K
aks6d1c5.8 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i
aks6d1c5p2.1 φ Y 0 0 A
aks6d1c5p2.2 φ Z 0 0 A
aks6d1c5p2.3 φ G Y = G Z
aks6d1c5p2.4 φ W 0 A
aks6d1c5p2.5 φ Y W < Z W
Assertion aks6d1c5lem2 φ 0 K 0 K

Proof

Step Hyp Ref Expression
1 aks6d1p5.1 φ K Field
2 aks6d1p5.2 φ P
3 aks6d1c5.3 P = chr K
4 aks6d1c5.4 φ A 0
5 aks6d1c5.5 φ A < P
6 aks6d1c5.6 X = var 1 K
7 aks6d1c5.7 × ˙ = mulGrp Poly 1 K
8 aks6d1c5.8 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i
9 aks6d1c5p2.1 φ Y 0 0 A
10 aks6d1c5p2.2 φ Z 0 0 A
11 aks6d1c5p2.3 φ G Y = G Z
12 aks6d1c5p2.4 φ W 0 A
13 aks6d1c5p2.5 φ Y W < Z W
14 eqid eval 1 K = eval 1 K
15 eqid Poly 1 K = Poly 1 K
16 eqid Base K = Base K
17 eqid Base Poly 1 K = Base Poly 1 K
18 isfld K Field K DivRing K CRing
19 18 simprbi K Field K CRing
20 1 19 syl φ K CRing
21 20 crngringd φ K Ring
22 eqid ℤRHom K = ℤRHom K
23 22 zrhrhm K Ring ℤRHom K ring RingHom K
24 21 23 syl φ ℤRHom K ring RingHom K
25 zringbas = Base ring
26 25 16 rhmf ℤRHom K ring RingHom K ℤRHom K : Base K
27 24 26 syl φ ℤRHom K : Base K
28 0zd φ 0
29 12 elfzelzd φ W
30 28 29 zsubcld φ 0 W
31 27 30 ffvelcdmd φ ℤRHom K 0 W Base K
32 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
33 32 17 mgpbas Base Poly 1 K = Base mulGrp Poly 1 K
34 15 ply1crng K CRing Poly 1 K CRing
35 20 34 syl φ Poly 1 K CRing
36 32 crngmgp Poly 1 K CRing mulGrp Poly 1 K CMnd
37 35 36 syl φ mulGrp Poly 1 K CMnd
38 37 cmnmndd φ mulGrp Poly 1 K Mnd
39 nn0ex 0 V
40 39 a1i φ 0 V
41 ovexd φ 0 A V
42 elmapg 0 V 0 A V Y 0 0 A Y : 0 A 0
43 40 41 42 syl2anc φ Y 0 0 A Y : 0 A 0
44 9 43 mpbid φ Y : 0 A 0
45 44 12 ffvelcdmd φ Y W 0
46 45 nn0zd φ Y W
47 46 46 zsubcld φ Y W Y W
48 0red φ 0
49 48 leidd φ 0 0
50 45 nn0red φ Y W
51 50 recnd φ Y W
52 51 subidd φ Y W Y W = 0
53 52 eqcomd φ 0 = Y W Y W
54 49 53 breqtrd φ 0 Y W Y W
55 47 54 jca φ Y W Y W 0 Y W Y W
56 elnn0z Y W Y W 0 Y W Y W 0 Y W Y W
57 55 56 sylibr φ Y W Y W 0
58 14 6 16 15 17 20 31 evl1vard φ X Base Poly 1 K eval 1 K X ℤRHom K 0 W = ℤRHom K 0 W
59 eqid algSc Poly 1 K = algSc Poly 1 K
60 27 29 ffvelcdmd φ ℤRHom K W Base K
61 14 15 16 59 17 20 60 31 evl1scad φ algSc Poly 1 K ℤRHom K W Base Poly 1 K eval 1 K algSc Poly 1 K ℤRHom K W ℤRHom K 0 W = ℤRHom K W
62 eqid + Poly 1 K = + Poly 1 K
63 eqid + K = + K
64 14 15 16 17 20 31 58 61 62 63 evl1addd φ X + Poly 1 K algSc Poly 1 K ℤRHom K W Base Poly 1 K eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K W ℤRHom K 0 W = ℤRHom K 0 W + K ℤRHom K W
65 64 simpld φ X + Poly 1 K algSc Poly 1 K ℤRHom K W Base Poly 1 K
66 33 7 38 57 65 mulgnn0cld φ Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W Base Poly 1 K
67 52 oveq1d φ Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W = 0 × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W
68 eqid 0 mulGrp Poly 1 K = 0 mulGrp Poly 1 K
69 33 68 7 mulg0 X + Poly 1 K algSc Poly 1 K ℤRHom K W Base Poly 1 K 0 × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W = 0 mulGrp Poly 1 K
70 65 69 syl φ 0 × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W = 0 mulGrp Poly 1 K
71 67 70 eqtrd φ Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W = 0 mulGrp Poly 1 K
72 71 fveq2d φ eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W = eval 1 K 0 mulGrp Poly 1 K
73 72 fveq1d φ eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W ℤRHom K 0 W = eval 1 K 0 mulGrp Poly 1 K ℤRHom K 0 W
74 eqid 1 Poly 1 K = 1 Poly 1 K
75 32 74 ringidval 1 Poly 1 K = 0 mulGrp Poly 1 K
76 75 eqcomi 0 mulGrp Poly 1 K = 1 Poly 1 K
77 76 a1i φ 0 mulGrp Poly 1 K = 1 Poly 1 K
78 77 fveq2d φ eval 1 K 0 mulGrp Poly 1 K = eval 1 K 1 Poly 1 K
79 78 fveq1d φ eval 1 K 0 mulGrp Poly 1 K ℤRHom K 0 W = eval 1 K 1 Poly 1 K ℤRHom K 0 W
80 15 6 32 7 ply1idvr1 K Ring 0 × ˙ X = 1 Poly 1 K
81 80 eqcomd K Ring 1 Poly 1 K = 0 × ˙ X
82 21 81 syl φ 1 Poly 1 K = 0 × ˙ X
83 82 fveq2d φ eval 1 K 1 Poly 1 K = eval 1 K 0 × ˙ X
84 83 fveq1d φ eval 1 K 1 Poly 1 K ℤRHom K 0 W = eval 1 K 0 × ˙ X ℤRHom K 0 W
85 eqid mulGrp K = mulGrp K
86 53 57 eqeltrd φ 0 0
87 14 15 16 17 20 31 58 7 85 86 evl1expd φ 0 × ˙ X Base Poly 1 K eval 1 K 0 × ˙ X ℤRHom K 0 W = 0 mulGrp K ℤRHom K 0 W
88 87 simprd φ eval 1 K 0 × ˙ X ℤRHom K 0 W = 0 mulGrp K ℤRHom K 0 W
89 eqid mulGrp K = mulGrp K
90 89 16 mgpbas Base K = Base mulGrp K
91 90 a1i φ Base K = Base mulGrp K
92 31 91 eleqtrd φ ℤRHom K 0 W Base mulGrp K
93 eqid Base mulGrp K = Base mulGrp K
94 eqid 0 mulGrp K = 0 mulGrp K
95 93 94 85 mulg0 ℤRHom K 0 W Base mulGrp K 0 mulGrp K ℤRHom K 0 W = 0 mulGrp K
96 92 95 syl φ 0 mulGrp K ℤRHom K 0 W = 0 mulGrp K
97 eqid 1 K = 1 K
98 89 97 ringidval 1 K = 0 mulGrp K
99 98 eqcomi 0 mulGrp K = 1 K
100 99 a1i φ 0 mulGrp K = 1 K
101 96 100 eqtrd φ 0 mulGrp K ℤRHom K 0 W = 1 K
102 88 101 eqtrd φ eval 1 K 0 × ˙ X ℤRHom K 0 W = 1 K
103 84 102 eqtrd φ eval 1 K 1 Poly 1 K ℤRHom K 0 W = 1 K
104 79 103 eqtrd φ eval 1 K 0 mulGrp Poly 1 K ℤRHom K 0 W = 1 K
105 73 104 eqtrd φ eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W ℤRHom K 0 W = 1 K
106 66 105 jca φ Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W Base Poly 1 K eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W ℤRHom K 0 W = 1 K
107 fzfid φ 0 A Fin
108 diffi 0 A Fin 0 A W Fin
109 107 108 syl φ 0 A W Fin
110 38 adantr φ i 0 A W mulGrp Poly 1 K Mnd
111 44 adantr φ i 0 A W Y : 0 A 0
112 eldifi i 0 A W i 0 A
113 112 adantl φ i 0 A W i 0 A
114 111 113 ffvelcdmd φ i 0 A W Y i 0
115 35 crngringd φ Poly 1 K Ring
116 ringcmn Poly 1 K Ring Poly 1 K CMnd
117 115 116 syl φ Poly 1 K CMnd
118 cmnmnd Poly 1 K CMnd Poly 1 K Mnd
119 117 118 syl φ Poly 1 K Mnd
120 119 adantr φ i 0 A W Poly 1 K Mnd
121 58 simpld φ X Base Poly 1 K
122 121 adantr φ i 0 A W X Base Poly 1 K
123 21 adantr φ i 0 A W K Ring
124 123 23 26 3syl φ i 0 A W ℤRHom K : Base K
125 113 elfzelzd φ i 0 A W i
126 124 125 ffvelcdmd φ i 0 A W ℤRHom K i Base K
127 15 59 16 17 ply1sclcl K Ring ℤRHom K i Base K algSc Poly 1 K ℤRHom K i Base Poly 1 K
128 123 126 127 syl2anc φ i 0 A W algSc Poly 1 K ℤRHom K i Base Poly 1 K
129 17 62 mndcl Poly 1 K Mnd X Base Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
130 120 122 128 129 syl3anc φ i 0 A W X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
131 33 7 110 114 130 mulgnn0cld φ i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
132 131 ralrimiva φ i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
133 33 37 109 132 gsummptcl φ mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
134 132 r19.21bi φ i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
135 134 ralrimiva φ i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
136 14 15 32 16 17 89 20 31 135 109 evl1gprodd φ eval 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
137 133 136 jca φ mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K eval 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
138 eqid Poly 1 K = Poly 1 K
139 32 138 mgpplusg Poly 1 K = + mulGrp Poly 1 K
140 139 eqcomi + mulGrp Poly 1 K = Poly 1 K
141 eqid K = K
142 14 15 16 17 20 31 106 137 140 141 evl1muld φ Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = 1 K K mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
143 142 simprd φ eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = 1 K K mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
144 fldidom K Field K IDomn
145 1 144 syl φ K IDomn
146 isidom K IDomn K CRing K Domn
147 145 146 sylib φ K CRing K Domn
148 147 simprd φ K Domn
149 98 a1i φ 1 K = 0 mulGrp K
150 89 ringmgp K Ring mulGrp K Mnd
151 21 150 syl φ mulGrp K Mnd
152 90 94 mndidcl mulGrp K Mnd 0 mulGrp K Base K
153 151 152 syl φ 0 mulGrp K Base K
154 149 153 eqeltrd φ 1 K Base K
155 1 flddrngd φ K DivRing
156 eqid 0 K = 0 K
157 156 97 drngunz K DivRing 1 K 0 K
158 155 157 syl φ 1 K 0 K
159 154 158 jca φ 1 K Base K 1 K 0 K
160 89 crngmgp K CRing mulGrp K CMnd
161 20 160 syl φ mulGrp K CMnd
162 20 adantr φ i 0 A W K CRing
163 31 adantr φ i 0 A W ℤRHom K 0 W Base K
164 14 15 16 17 162 163 131 fveval1fvcl φ i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W Base K
165 164 ralrimiva φ i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W Base K
166 90 161 109 165 gsummptcl φ mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W Base K
167 33 a1i φ i 0 A W Base Poly 1 K = Base mulGrp Poly 1 K
168 130 167 eleqtrd φ i 0 A W X + Poly 1 K algSc Poly 1 K ℤRHom K i Base mulGrp Poly 1 K
169 33 eqcomi Base mulGrp Poly 1 K = Base Poly 1 K
170 169 a1i φ i 0 A W Base mulGrp Poly 1 K = Base Poly 1 K
171 168 170 eleqtrd φ i 0 A W X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
172 eqidd φ i 0 A W eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
173 171 172 jca φ i 0 A W X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
174 14 15 16 17 162 163 173 7 85 114 evl1expd φ i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = Y i mulGrp K eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
175 174 simprd φ i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = Y i mulGrp K eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
176 145 adantr φ i 0 A W K IDomn
177 14 15 16 17 162 163 171 fveval1fvcl φ i 0 A W eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W Base K
178 eldifsni i 0 A W i W
179 178 adantl φ i 0 A W i W
180 1 adantr φ i 0 A W K Field
181 2 adantr φ i 0 A W P
182 4 adantr φ i 0 A W A 0
183 5 adantr φ i 0 A W A < P
184 12 adantr φ i 0 A W W 0 A
185 180 181 3 182 183 6 7 8 113 184 aks6d1c5lem1 φ i 0 A W i = W eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = 0 K
186 185 necon3bid φ i 0 A W i W eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W 0 K
187 179 186 mpbid φ i 0 A W eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W 0 K
188 176 177 187 114 85 idomnnzpownz φ i 0 A W Y i mulGrp K eval 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W 0 K
189 175 188 eqnetrd φ i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W 0 K
190 89 145 109 164 189 idomnnzgmulnz φ mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W 0 K
191 166 190 jca φ mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W Base K mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W 0 K
192 16 141 156 domnmuln0 K Domn 1 K Base K 1 K 0 K mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W Base K mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W 0 K 1 K K mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W 0 K
193 148 159 191 192 syl3anc φ 1 K K mulGrp K i 0 A W eval 1 K Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W 0 K
194 143 193 eqnetrd φ eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W 0 K
195 194 necomd φ 0 K eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
196 50 leidd φ Y W Y W
197 eqid quot 1p K = quot 1p K
198 1 2 3 4 5 6 7 8 9 12 45 196 197 59 32 aks6d1c5lem3 φ G Y quot 1p K Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W = Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i
199 198 eqcomd φ Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i = G Y quot 1p K Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W
200 11 oveq1d φ G Y quot 1p K Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W = G Z quot 1p K Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W
201 elmapg 0 V 0 A V Z 0 0 A Z : 0 A 0
202 40 41 201 syl2anc φ Z 0 0 A Z : 0 A 0
203 10 202 mpbid φ Z : 0 A 0
204 203 12 ffvelcdmd φ Z W 0
205 204 nn0red φ Z W
206 50 205 13 ltled φ Y W Z W
207 1 2 3 4 5 6 7 8 10 12 45 206 197 59 32 aks6d1c5lem3 φ G Z quot 1p K Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W = Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i
208 199 200 207 3eqtrd φ Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i = Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i
209 208 fveq2d φ eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i = eval 1 K Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i
210 209 fveq1d φ eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = eval 1 K Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
211 204 nn0zd φ Z W
212 211 46 zsubcld φ Z W Y W
213 205 50 resubcld φ Z W Y W
214 50 205 posdifd φ Y W < Z W 0 < Z W Y W
215 13 214 mpbid φ 0 < Z W Y W
216 48 213 215 ltled φ 0 Z W Y W
217 212 216 jca φ Z W Y W 0 Z W Y W
218 elnn0z Z W Y W 0 Z W Y W 0 Z W Y W
219 217 218 sylibr φ Z W Y W 0
220 14 15 16 17 20 31 64 7 85 219 evl1expd φ Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W Base Poly 1 K eval 1 K Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W ℤRHom K 0 W = Z W Y W mulGrp K ℤRHom K 0 W + K ℤRHom K W
221 220 simpld φ Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W Base Poly 1 K
222 220 simprd φ eval 1 K Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W ℤRHom K 0 W = Z W Y W mulGrp K ℤRHom K 0 W + K ℤRHom K W
223 rhmghm ℤRHom K ring RingHom K ℤRHom K ring GrpHom K
224 24 223 syl φ ℤRHom K ring GrpHom K
225 30 25 eleqtrdi φ 0 W Base ring
226 29 25 eleqtrdi φ W Base ring
227 eqid Base ring = Base ring
228 eqid + ring = + ring
229 227 228 63 ghmlin ℤRHom K ring GrpHom K 0 W Base ring W Base ring ℤRHom K 0 W + ring W = ℤRHom K 0 W + K ℤRHom K W
230 224 225 226 229 syl3anc φ ℤRHom K 0 W + ring W = ℤRHom K 0 W + K ℤRHom K W
231 zringplusg + = + ring
232 231 eqcomi + ring = +
233 232 a1i φ + ring = +
234 233 oveqd φ 0 W + ring W = 0 - W + W
235 234 fveq2d φ ℤRHom K 0 W + ring W = ℤRHom K 0 - W + W
236 0cnd φ 0
237 29 zcnd φ W
238 236 237 npcand φ 0 - W + W = 0
239 238 fveq2d φ ℤRHom K 0 - W + W = ℤRHom K 0
240 235 239 eqtrd φ ℤRHom K 0 W + ring W = ℤRHom K 0
241 22 156 zrh0 K Ring ℤRHom K 0 = 0 K
242 21 241 syl φ ℤRHom K 0 = 0 K
243 240 242 eqtrd φ ℤRHom K 0 W + ring W = 0 K
244 230 243 eqtr3d φ ℤRHom K 0 W + K ℤRHom K W = 0 K
245 244 oveq2d φ Z W Y W mulGrp K ℤRHom K 0 W + K ℤRHom K W = Z W Y W mulGrp K 0 K
246 219 nn0zd φ Z W Y W
247 246 215 jca φ Z W Y W 0 < Z W Y W
248 elnnz Z W Y W Z W Y W 0 < Z W Y W
249 247 248 sylibr φ Z W Y W
250 21 249 85 ringexp0nn φ Z W Y W mulGrp K 0 K = 0 K
251 245 250 eqtrd φ Z W Y W mulGrp K ℤRHom K 0 W + K ℤRHom K W = 0 K
252 222 251 eqtrd φ eval 1 K Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W ℤRHom K 0 W = 0 K
253 221 252 jca φ Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W Base Poly 1 K eval 1 K Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W ℤRHom K 0 W = 0 K
254 eqid Base mulGrp Poly 1 K = Base mulGrp Poly 1 K
255 203 adantr φ i 0 A W Z : 0 A 0
256 255 113 ffvelcdmd φ i 0 A W Z i 0
257 254 7 110 256 168 mulgnn0cld φ i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base mulGrp Poly 1 K
258 257 170 eleqtrd φ i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
259 258 ralrimiva φ i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
260 33 37 109 259 gsummptcl φ mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
261 eqidd φ eval 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = eval 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
262 260 261 jca φ mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K eval 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = eval 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
263 14 15 16 17 20 31 253 262 140 141 evl1muld φ Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K eval 1 K Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = 0 K K eval 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
264 263 simprd φ eval 1 K Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = 0 K K eval 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W
265 14 15 16 17 20 31 260 fveval1fvcl φ eval 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W Base K
266 16 141 156 21 265 ringlzd φ 0 K K eval 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = 0 K
267 264 266 eqtrd φ eval 1 K Z W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Z i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = 0 K
268 210 267 eqtrd φ eval 1 K Y W Y W × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K W + mulGrp Poly 1 K mulGrp Poly 1 K i 0 A W Y i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i ℤRHom K 0 W = 0 K
269 195 268 neeqtrd φ 0 K 0 K