| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1gprod.1 |
|
| 2 |
|
deg1gprod.2 |
|
| 3 |
|
deg1gprod.3 |
|
| 4 |
|
mpteq1 |
|
| 5 |
4
|
oveq2d |
|
| 6 |
5
|
fveq2d |
|
| 7 |
|
sumeq1 |
|
| 8 |
6 7
|
eqeq12d |
|
| 9 |
6
|
breq2d |
|
| 10 |
8 9
|
anbi12d |
|
| 11 |
|
mpteq1 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
12
|
fveq2d |
|
| 14 |
|
sumeq1 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
13
|
breq2d |
|
| 17 |
15 16
|
anbi12d |
|
| 18 |
|
mpteq1 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
19
|
fveq2d |
|
| 21 |
|
sumeq1 |
|
| 22 |
20 21
|
eqeq12d |
|
| 23 |
20
|
breq2d |
|
| 24 |
22 23
|
anbi12d |
|
| 25 |
|
mpteq1 |
|
| 26 |
25
|
oveq2d |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
sumeq1 |
|
| 29 |
27 28
|
eqeq12d |
|
| 30 |
27
|
breq2d |
|
| 31 |
29 30
|
anbi12d |
|
| 32 |
|
mpt0 |
|
| 33 |
32
|
a1i |
|
| 34 |
33
|
oveq2d |
|
| 35 |
|
eqid |
|
| 36 |
35
|
gsum0 |
|
| 37 |
36
|
a1i |
|
| 38 |
34 37
|
eqtrd |
|
| 39 |
38
|
fveq2d |
|
| 40 |
1
|
idomringd |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
44 45
|
ringidval |
|
| 47 |
46
|
eqcomi |
|
| 48 |
41 42 43 47
|
ply1scl1 |
|
| 49 |
40 48
|
syl |
|
| 50 |
49
|
eqcomd |
|
| 51 |
50
|
fveq2d |
|
| 52 |
|
eqid |
|
| 53 |
52 43
|
ringidcl |
|
| 54 |
40 53
|
syl |
|
| 55 |
1
|
idomdomd |
|
| 56 |
|
domnnzr |
|
| 57 |
55 56
|
syl |
|
| 58 |
|
eqid |
|
| 59 |
43 58
|
nzrnz |
|
| 60 |
57 59
|
syl |
|
| 61 |
|
eqid |
|
| 62 |
61 41 52 42 58
|
deg1scl |
|
| 63 |
40 54 60 62
|
syl3anc |
|
| 64 |
51 63
|
eqtrd |
|
| 65 |
39 64
|
eqtrd |
|
| 66 |
|
sum0 |
|
| 67 |
66
|
eqcomi |
|
| 68 |
67
|
a1i |
|
| 69 |
65 68
|
eqtrd |
|
| 70 |
|
0red |
|
| 71 |
70
|
leidd |
|
| 72 |
65
|
eqcomd |
|
| 73 |
71 72
|
breqtrd |
|
| 74 |
69 73
|
jca |
|
| 75 |
|
nfcv |
|
| 76 |
|
nfcsb1v |
|
| 77 |
|
csbeq1a |
|
| 78 |
75 76 77
|
cbvmpt |
|
| 79 |
78
|
a1i |
|
| 80 |
79
|
oveq2d |
|
| 81 |
80
|
fveq2d |
|
| 82 |
|
eqid |
|
| 83 |
|
eqid |
|
| 84 |
|
isidom |
|
| 85 |
1 84
|
sylib |
|
| 86 |
85
|
simpld |
|
| 87 |
41
|
ply1crng |
|
| 88 |
86 87
|
syl |
|
| 89 |
44
|
crngmgp |
|
| 90 |
88 89
|
syl |
|
| 91 |
90
|
adantr |
|
| 92 |
91
|
adantr |
|
| 93 |
2
|
ad2antrr |
|
| 94 |
|
simplrl |
|
| 95 |
93 94
|
ssfid |
|
| 96 |
94
|
sselda |
|
| 97 |
|
r19.26 |
|
| 98 |
97
|
biimpi |
|
| 99 |
3 98
|
syl |
|
| 100 |
99
|
simpld |
|
| 101 |
100
|
ad3antrrr |
|
| 102 |
|
rspcsbela |
|
| 103 |
96 101 102
|
syl2anc |
|
| 104 |
|
eqid |
|
| 105 |
44 104
|
mgpbas |
|
| 106 |
103 105
|
eleqtrdi |
|
| 107 |
|
eldifi |
|
| 108 |
107
|
adantl |
|
| 109 |
108
|
adantl |
|
| 110 |
109
|
adantr |
|
| 111 |
|
eldifn |
|
| 112 |
111
|
adantl |
|
| 113 |
112
|
adantl |
|
| 114 |
113
|
adantr |
|
| 115 |
100
|
ad2antrr |
|
| 116 |
|
rspcsbela |
|
| 117 |
110 115 116
|
syl2anc |
|
| 118 |
117 105
|
eleqtrdi |
|
| 119 |
|
csbeq1 |
|
| 120 |
82 83 92 95 106 110 114 118 119
|
gsumunsn |
|
| 121 |
120
|
fveq2d |
|
| 122 |
|
eqid |
|
| 123 |
44 122
|
mgpplusg |
|
| 124 |
123
|
eqcomi |
|
| 125 |
|
eqid |
|
| 126 |
55
|
adantr |
|
| 127 |
126
|
adantr |
|
| 128 |
103
|
ralrimiva |
|
| 129 |
105 92 95 128
|
gsummptcl |
|
| 130 |
41
|
ply1idom |
|
| 131 |
1 130
|
syl |
|
| 132 |
131
|
adantr |
|
| 133 |
132
|
adantr |
|
| 134 |
99
|
simprd |
|
| 135 |
134
|
ad3antrrr |
|
| 136 |
|
rspcsbnea |
|
| 137 |
96 135 136
|
syl2anc |
|
| 138 |
44 133 95 103 137
|
idomnnzgmulnz |
|
| 139 |
134
|
ad2antrr |
|
| 140 |
|
rspcsbnea |
|
| 141 |
110 139 140
|
syl2anc |
|
| 142 |
61 41 104 124 125 127 129 138 117 141
|
deg1mul |
|
| 143 |
75 76 77
|
cbvmpt |
|
| 144 |
143
|
eqcomi |
|
| 145 |
144
|
a1i |
|
| 146 |
145
|
oveq2d |
|
| 147 |
146
|
fveq2d |
|
| 148 |
147
|
oveq1d |
|
| 149 |
|
simpl |
|
| 150 |
149
|
adantl |
|
| 151 |
150
|
oveq1d |
|
| 152 |
|
nfv |
|
| 153 |
|
nfcv |
|
| 154 |
2
|
adantr |
|
| 155 |
|
simprl |
|
| 156 |
154 155
|
ssfid |
|
| 157 |
75 76 77
|
cbvmpt |
|
| 158 |
157
|
fveq1i |
|
| 159 |
158
|
a1i |
|
| 160 |
159
|
fveq2d |
|
| 161 |
|
eqidd |
|
| 162 |
|
simpr |
|
| 163 |
162
|
csbeq1d |
|
| 164 |
155
|
sselda |
|
| 165 |
100
|
adantr |
|
| 166 |
165
|
adantr |
|
| 167 |
|
rspcsbela |
|
| 168 |
164 166 167
|
syl2anc |
|
| 169 |
161 163 164 168
|
fvmptd |
|
| 170 |
169
|
fveq2d |
|
| 171 |
40
|
adantr |
|
| 172 |
171
|
adantr |
|
| 173 |
134
|
ad2antrr |
|
| 174 |
|
rspcsbnea |
|
| 175 |
164 173 174
|
syl2anc |
|
| 176 |
61 41 125 104
|
deg1nn0cl |
|
| 177 |
172 168 175 176
|
syl3anc |
|
| 178 |
170 177
|
eqeltrd |
|
| 179 |
160 178
|
eqeltrd |
|
| 180 |
179
|
nn0cnd |
|
| 181 |
|
2fveq3 |
|
| 182 |
109 165 116
|
syl2anc |
|
| 183 |
|
eqid |
|
| 184 |
183
|
fvmpts |
|
| 185 |
109 182 184
|
syl2anc |
|
| 186 |
185
|
fveq2d |
|
| 187 |
108 134 140
|
syl2anr |
|
| 188 |
61 41 125 104
|
deg1nn0cl |
|
| 189 |
171 182 187 188
|
syl3anc |
|
| 190 |
186 189
|
eqeltrd |
|
| 191 |
190
|
nn0cnd |
|
| 192 |
152 153 156 109 113 180 181 191
|
fsumsplitsn |
|
| 193 |
192
|
adantr |
|
| 194 |
185
|
adantr |
|
| 195 |
194
|
fveq2d |
|
| 196 |
195
|
oveq2d |
|
| 197 |
193 196
|
eqtrd |
|
| 198 |
197
|
eqcomd |
|
| 199 |
151 198
|
eqtrd |
|
| 200 |
148 199
|
eqtrd |
|
| 201 |
142 200
|
eqtrd |
|
| 202 |
121 201
|
eqtrd |
|
| 203 |
81 202
|
eqtrd |
|
| 204 |
171
|
adantr |
|
| 205 |
110
|
snssd |
|
| 206 |
94 205
|
unssd |
|
| 207 |
93 206
|
ssfid |
|
| 208 |
165
|
adantr |
|
| 209 |
|
ssralv |
|
| 210 |
206 209
|
syl |
|
| 211 |
208 210
|
mpd |
|
| 212 |
105 92 207 211
|
gsummptcl |
|
| 213 |
78
|
oveq2i |
|
| 214 |
213
|
a1i |
|
| 215 |
109
|
snssd |
|
| 216 |
155 215
|
unssd |
|
| 217 |
154 216
|
ssfid |
|
| 218 |
216
|
sselda |
|
| 219 |
165
|
adantr |
|
| 220 |
218 219 102
|
syl2anc |
|
| 221 |
134
|
ad2antrr |
|
| 222 |
218 221 136
|
syl2anc |
|
| 223 |
44 132 217 220 222
|
idomnnzgmulnz |
|
| 224 |
214 223
|
eqnetrd |
|
| 225 |
224
|
adantr |
|
| 226 |
61 41 125 104
|
deg1nn0cl |
|
| 227 |
204 212 225 226
|
syl3anc |
|
| 228 |
227
|
nn0ge0d |
|
| 229 |
203 228
|
jca |
|
| 230 |
229
|
ex |
|
| 231 |
10 17 24 31 74 230 2
|
findcard2d |
|