Step |
Hyp |
Ref |
Expression |
1 |
|
deg1gprod.1 |
|
2 |
|
deg1gprod.2 |
|
3 |
|
deg1gprod.3 |
|
4 |
|
mpteq1 |
|
5 |
4
|
oveq2d |
|
6 |
5
|
fveq2d |
|
7 |
|
sumeq1 |
|
8 |
6 7
|
eqeq12d |
|
9 |
6
|
breq2d |
|
10 |
8 9
|
anbi12d |
|
11 |
|
mpteq1 |
|
12 |
11
|
oveq2d |
|
13 |
12
|
fveq2d |
|
14 |
|
sumeq1 |
|
15 |
13 14
|
eqeq12d |
|
16 |
13
|
breq2d |
|
17 |
15 16
|
anbi12d |
|
18 |
|
mpteq1 |
|
19 |
18
|
oveq2d |
|
20 |
19
|
fveq2d |
|
21 |
|
sumeq1 |
|
22 |
20 21
|
eqeq12d |
|
23 |
20
|
breq2d |
|
24 |
22 23
|
anbi12d |
|
25 |
|
mpteq1 |
|
26 |
25
|
oveq2d |
|
27 |
26
|
fveq2d |
|
28 |
|
sumeq1 |
|
29 |
27 28
|
eqeq12d |
|
30 |
27
|
breq2d |
|
31 |
29 30
|
anbi12d |
|
32 |
|
mpt0 |
|
33 |
32
|
a1i |
|
34 |
33
|
oveq2d |
|
35 |
|
eqid |
|
36 |
35
|
gsum0 |
|
37 |
36
|
a1i |
|
38 |
34 37
|
eqtrd |
|
39 |
38
|
fveq2d |
|
40 |
1
|
idomringd |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
44 45
|
ringidval |
|
47 |
46
|
eqcomi |
|
48 |
41 42 43 47
|
ply1scl1 |
|
49 |
40 48
|
syl |
|
50 |
49
|
eqcomd |
|
51 |
50
|
fveq2d |
|
52 |
|
eqid |
|
53 |
52 43
|
ringidcl |
|
54 |
40 53
|
syl |
|
55 |
1
|
idomdomd |
|
56 |
|
domnnzr |
|
57 |
55 56
|
syl |
|
58 |
|
eqid |
|
59 |
43 58
|
nzrnz |
|
60 |
57 59
|
syl |
|
61 |
|
eqid |
|
62 |
61 41 52 42 58
|
deg1scl |
|
63 |
40 54 60 62
|
syl3anc |
|
64 |
51 63
|
eqtrd |
|
65 |
39 64
|
eqtrd |
|
66 |
|
sum0 |
|
67 |
66
|
eqcomi |
|
68 |
67
|
a1i |
|
69 |
65 68
|
eqtrd |
|
70 |
|
0red |
|
71 |
70
|
leidd |
|
72 |
65
|
eqcomd |
|
73 |
71 72
|
breqtrd |
|
74 |
69 73
|
jca |
|
75 |
|
nfcv |
|
76 |
|
nfcsb1v |
|
77 |
|
csbeq1a |
|
78 |
75 76 77
|
cbvmpt |
|
79 |
78
|
a1i |
|
80 |
79
|
oveq2d |
|
81 |
80
|
fveq2d |
|
82 |
|
eqid |
|
83 |
|
eqid |
|
84 |
|
isidom |
|
85 |
1 84
|
sylib |
|
86 |
85
|
simpld |
|
87 |
41
|
ply1crng |
|
88 |
86 87
|
syl |
|
89 |
44
|
crngmgp |
|
90 |
88 89
|
syl |
|
91 |
90
|
adantr |
|
92 |
91
|
adantr |
|
93 |
2
|
ad2antrr |
|
94 |
|
simplrl |
|
95 |
93 94
|
ssfid |
|
96 |
94
|
sselda |
|
97 |
|
r19.26 |
|
98 |
97
|
biimpi |
|
99 |
3 98
|
syl |
|
100 |
99
|
simpld |
|
101 |
100
|
ad3antrrr |
|
102 |
|
rspcsbela |
|
103 |
96 101 102
|
syl2anc |
|
104 |
|
eqid |
|
105 |
44 104
|
mgpbas |
|
106 |
103 105
|
eleqtrdi |
|
107 |
|
eldifi |
|
108 |
107
|
adantl |
|
109 |
108
|
adantl |
|
110 |
109
|
adantr |
|
111 |
|
eldifn |
|
112 |
111
|
adantl |
|
113 |
112
|
adantl |
|
114 |
113
|
adantr |
|
115 |
100
|
ad2antrr |
|
116 |
|
rspcsbela |
|
117 |
110 115 116
|
syl2anc |
|
118 |
117 105
|
eleqtrdi |
|
119 |
|
csbeq1 |
|
120 |
82 83 92 95 106 110 114 118 119
|
gsumunsn |
|
121 |
120
|
fveq2d |
|
122 |
|
eqid |
|
123 |
44 122
|
mgpplusg |
|
124 |
123
|
eqcomi |
|
125 |
|
eqid |
|
126 |
55
|
adantr |
|
127 |
126
|
adantr |
|
128 |
103
|
ralrimiva |
|
129 |
105 92 95 128
|
gsummptcl |
|
130 |
41
|
ply1idom |
|
131 |
1 130
|
syl |
|
132 |
131
|
adantr |
|
133 |
132
|
adantr |
|
134 |
99
|
simprd |
|
135 |
134
|
ad3antrrr |
|
136 |
|
rspcsbnea |
|
137 |
96 135 136
|
syl2anc |
|
138 |
44 133 95 103 137
|
idomnnzgmulnz |
|
139 |
134
|
ad2antrr |
|
140 |
|
rspcsbnea |
|
141 |
110 139 140
|
syl2anc |
|
142 |
61 41 104 124 125 127 129 138 117 141
|
deg1mul |
|
143 |
75 76 77
|
cbvmpt |
|
144 |
143
|
eqcomi |
|
145 |
144
|
a1i |
|
146 |
145
|
oveq2d |
|
147 |
146
|
fveq2d |
|
148 |
147
|
oveq1d |
|
149 |
|
simpl |
|
150 |
149
|
adantl |
|
151 |
150
|
oveq1d |
|
152 |
|
nfv |
|
153 |
|
nfcv |
|
154 |
2
|
adantr |
|
155 |
|
simprl |
|
156 |
154 155
|
ssfid |
|
157 |
75 76 77
|
cbvmpt |
|
158 |
157
|
fveq1i |
|
159 |
158
|
a1i |
|
160 |
159
|
fveq2d |
|
161 |
|
eqidd |
|
162 |
|
simpr |
|
163 |
162
|
csbeq1d |
|
164 |
155
|
sselda |
|
165 |
100
|
adantr |
|
166 |
165
|
adantr |
|
167 |
|
rspcsbela |
|
168 |
164 166 167
|
syl2anc |
|
169 |
161 163 164 168
|
fvmptd |
|
170 |
169
|
fveq2d |
|
171 |
40
|
adantr |
|
172 |
171
|
adantr |
|
173 |
134
|
ad2antrr |
|
174 |
|
rspcsbnea |
|
175 |
164 173 174
|
syl2anc |
|
176 |
61 41 125 104
|
deg1nn0cl |
|
177 |
172 168 175 176
|
syl3anc |
|
178 |
170 177
|
eqeltrd |
|
179 |
160 178
|
eqeltrd |
|
180 |
179
|
nn0cnd |
|
181 |
|
2fveq3 |
|
182 |
109 165 116
|
syl2anc |
|
183 |
|
eqid |
|
184 |
183
|
fvmpts |
|
185 |
109 182 184
|
syl2anc |
|
186 |
185
|
fveq2d |
|
187 |
108 134 140
|
syl2anr |
|
188 |
61 41 125 104
|
deg1nn0cl |
|
189 |
171 182 187 188
|
syl3anc |
|
190 |
186 189
|
eqeltrd |
|
191 |
190
|
nn0cnd |
|
192 |
152 153 156 109 113 180 181 191
|
fsumsplitsn |
|
193 |
192
|
adantr |
|
194 |
185
|
adantr |
|
195 |
194
|
fveq2d |
|
196 |
195
|
oveq2d |
|
197 |
193 196
|
eqtrd |
|
198 |
197
|
eqcomd |
|
199 |
151 198
|
eqtrd |
|
200 |
148 199
|
eqtrd |
|
201 |
142 200
|
eqtrd |
|
202 |
121 201
|
eqtrd |
|
203 |
81 202
|
eqtrd |
|
204 |
171
|
adantr |
|
205 |
110
|
snssd |
|
206 |
94 205
|
unssd |
|
207 |
93 206
|
ssfid |
|
208 |
165
|
adantr |
|
209 |
|
ssralv |
|
210 |
206 209
|
syl |
|
211 |
208 210
|
mpd |
|
212 |
105 92 207 211
|
gsummptcl |
|
213 |
78
|
oveq2i |
|
214 |
213
|
a1i |
|
215 |
109
|
snssd |
|
216 |
155 215
|
unssd |
|
217 |
154 216
|
ssfid |
|
218 |
216
|
sselda |
|
219 |
165
|
adantr |
|
220 |
218 219 102
|
syl2anc |
|
221 |
134
|
ad2antrr |
|
222 |
218 221 136
|
syl2anc |
|
223 |
44 132 217 220 222
|
idomnnzgmulnz |
|
224 |
214 223
|
eqnetrd |
|
225 |
224
|
adantr |
|
226 |
61 41 125 104
|
deg1nn0cl |
|
227 |
204 212 225 226
|
syl3anc |
|
228 |
227
|
nn0ge0d |
|
229 |
203 228
|
jca |
|
230 |
229
|
ex |
|
231 |
10 17 24 31 74 230 2
|
findcard2d |
|