| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1p5.1 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 2 |  | aks6d1p5.2 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | aks6d1c5.3 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 4 |  | aks6d1c5.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 5 |  | aks6d1c5.5 | ⊢ ( 𝜑  →  𝐴  <  𝑃 ) | 
						
							| 6 |  | aks6d1c5.6 | ⊢ 𝑋  =  ( var1 ‘ 𝐾 ) | 
						
							| 7 |  | aks6d1c5.7 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 8 |  | aks6d1c5.8 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 10 | 1 | fldcrngd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 11 |  | eqid | ⊢ ( Poly1 ‘ 𝐾 )  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 12 | 11 | ply1crng | ⊢ ( 𝐾  ∈  CRing  →  ( Poly1 ‘ 𝐾 )  ∈  CRing ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  CRing ) | 
						
							| 14 |  | eqid | ⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  =  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 15 | 14 | crngmgp | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  CRing  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  CMnd ) | 
						
							| 16 | 13 15 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  CMnd ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  CMnd ) | 
						
							| 18 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 0 ... 𝐴 )  ∈  Fin ) | 
						
							| 19 | 17 | cmnmndd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  Mnd ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  Mnd ) | 
						
							| 21 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 23 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ∈  V ) | 
						
							| 24 | 22 23 | elmapd | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 25 | 24 | biimpd | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  →  𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑔 ‘ 𝑖 )  ∈  ℕ0 ) | 
						
							| 28 | 13 | crngringd | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Ring ) | 
						
							| 29 | 28 | ringcmnd | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 30 |  | cmnmnd | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  CMnd  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 34 | 10 | crngringd | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  𝐾  ∈  Ring ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝐾  ∈  Ring ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 38 | 6 11 37 | vr1cl | ⊢ ( 𝐾  ∈  Ring  →  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 39 | 36 38 | syl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 40 |  | simpl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) | 
						
							| 41 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 0 ... 𝐴 )  →  𝑖  ∈  ℤ ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 43 | 40 42 | jca | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ℤ ) ) | 
						
							| 44 |  | eqid | ⊢ ( ℤRHom ‘ 𝐾 )  =  ( ℤRHom ‘ 𝐾 ) | 
						
							| 45 | 44 | zrhrhm | ⊢ ( 𝐾  ∈  Ring  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 ) ) | 
						
							| 46 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 47 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 48 | 46 47 | rhmf | ⊢ ( ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 )  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 49 | 45 48 | syl | ⊢ ( 𝐾  ∈  Ring  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 50 | 35 49 | syl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 51 | 50 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ℤ )  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 52 | 43 51 | syl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 53 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) )  =  ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 54 | 11 53 47 37 | ply1sclcl | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 55 | 36 52 54 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 56 |  | eqid | ⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( +g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 57 | 37 56 | mndcl | ⊢ ( ( ( Poly1 ‘ 𝐾 )  ∈  Mnd  ∧  𝑋  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 58 | 33 39 55 57 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 59 | 14 37 | mgpbas | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 60 | 59 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 61 | 58 60 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 62 | 9 7 20 27 61 | mulgnn0cld | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 63 | 62 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ∀ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 64 | 9 17 18 63 | gsummptcl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) )  ∈  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 65 | 59 | eqcomi | ⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 66 | 65 | a1i | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 67 | 64 66 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 )  ↑  ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 68 | 67 8 | fmptd | ⊢ ( 𝜑  →  𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |