Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1p5.1 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
2 |
|
aks6d1p5.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
3 |
|
aks6d1c5.3 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
4 |
|
aks6d1c5.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
5 |
|
aks6d1c5.5 |
⊢ ( 𝜑 → 𝐴 < 𝑃 ) |
6 |
|
aks6d1c5.6 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
7 |
|
aks6d1c5.7 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
8 |
|
aks6d1c5.8 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
10 |
1
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
11 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
12 |
11
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
13 |
10 12
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
14 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) = ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) |
15 |
14
|
crngmgp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CRing → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
16 |
13 15
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ CMnd ) |
18 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 0 ... 𝐴 ) ∈ Fin ) |
19 |
17
|
cmnmndd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
21 |
|
nn0ex |
⊢ ℕ0 ∈ V |
22 |
21
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
23 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ V ) |
24 |
22 23
|
elmapd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
25 |
24
|
biimpd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) → 𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
26 |
25
|
imp |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝑔 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
27 |
26
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑔 ‘ 𝑖 ) ∈ ℕ0 ) |
28 |
13
|
crngringd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
29 |
28
|
ringcmnd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ CMnd ) |
30 |
|
cmnmnd |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CMnd → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
34 |
10
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → 𝐾 ∈ Ring ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝐾 ∈ Ring ) |
37 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
38 |
6 11 37
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
39 |
36 38
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
40 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
41 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝐴 ) → 𝑖 ∈ ℤ ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑖 ∈ ℤ ) |
43 |
40 42
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ℤ ) ) |
44 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
45 |
44
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
46 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
47 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
48 |
46 47
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
49 |
45 48
|
syl |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
50 |
35 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
51 |
50
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ℤ ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) |
52 |
43 51
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) |
53 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) = ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) |
54 |
11 53 47 37
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
55 |
36 52 54
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
56 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ ( Poly1 ‘ 𝐾 ) ) |
57 |
37 56
|
mndcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
58 |
33 39 55 57
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
59 |
14 37
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
60 |
59
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
61 |
58 60
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
62 |
9 7 20 27 61
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
63 |
62
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ∀ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
64 |
9 17 18 63
|
gsummptcl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
65 |
59
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
66 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
67 |
64 66
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ↑ ( 𝑋 ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
68 |
67 8
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |