Metamath Proof Explorer


Theorem aks6d1c5lem0

Description: Lemma for Claim 5 of Theorem 6.1, G defines a map into the polynomials. (Contributed by metakunt, 5-May-2025)

Ref Expression
Hypotheses aks6d1p5.1 φ K Field
aks6d1p5.2 φ P
aks6d1c5.3 P = chr K
aks6d1c5.4 φ A 0
aks6d1c5.5 φ A < P
aks6d1c5.6 X = var 1 K
aks6d1c5.7 × ˙ = mulGrp Poly 1 K
aks6d1c5.8 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i
Assertion aks6d1c5lem0 φ G : 0 0 A Base Poly 1 K

Proof

Step Hyp Ref Expression
1 aks6d1p5.1 φ K Field
2 aks6d1p5.2 φ P
3 aks6d1c5.3 P = chr K
4 aks6d1c5.4 φ A 0
5 aks6d1c5.5 φ A < P
6 aks6d1c5.6 X = var 1 K
7 aks6d1c5.7 × ˙ = mulGrp Poly 1 K
8 aks6d1c5.8 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i
9 eqid Base mulGrp Poly 1 K = Base mulGrp Poly 1 K
10 1 fldcrngd φ K CRing
11 eqid Poly 1 K = Poly 1 K
12 11 ply1crng K CRing Poly 1 K CRing
13 10 12 syl φ Poly 1 K CRing
14 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
15 14 crngmgp Poly 1 K CRing mulGrp Poly 1 K CMnd
16 13 15 syl φ mulGrp Poly 1 K CMnd
17 16 adantr φ g 0 0 A mulGrp Poly 1 K CMnd
18 fzfid φ g 0 0 A 0 A Fin
19 17 cmnmndd φ g 0 0 A mulGrp Poly 1 K Mnd
20 19 adantr φ g 0 0 A i 0 A mulGrp Poly 1 K Mnd
21 nn0ex 0 V
22 21 a1i φ 0 V
23 ovexd φ 0 A V
24 22 23 elmapd φ g 0 0 A g : 0 A 0
25 24 biimpd φ g 0 0 A g : 0 A 0
26 25 imp φ g 0 0 A g : 0 A 0
27 26 ffvelcdmda φ g 0 0 A i 0 A g i 0
28 13 crngringd φ Poly 1 K Ring
29 28 ringcmnd φ Poly 1 K CMnd
30 cmnmnd Poly 1 K CMnd Poly 1 K Mnd
31 29 30 syl φ Poly 1 K Mnd
32 31 adantr φ g 0 0 A Poly 1 K Mnd
33 32 adantr φ g 0 0 A i 0 A Poly 1 K Mnd
34 10 crngringd φ K Ring
35 34 adantr φ g 0 0 A K Ring
36 35 adantr φ g 0 0 A i 0 A K Ring
37 eqid Base Poly 1 K = Base Poly 1 K
38 6 11 37 vr1cl K Ring X Base Poly 1 K
39 36 38 syl φ g 0 0 A i 0 A X Base Poly 1 K
40 simpl φ g 0 0 A i 0 A φ g 0 0 A
41 elfzelz i 0 A i
42 41 adantl φ g 0 0 A i 0 A i
43 40 42 jca φ g 0 0 A i 0 A φ g 0 0 A i
44 eqid ℤRHom K = ℤRHom K
45 44 zrhrhm K Ring ℤRHom K ring RingHom K
46 zringbas = Base ring
47 eqid Base K = Base K
48 46 47 rhmf ℤRHom K ring RingHom K ℤRHom K : Base K
49 45 48 syl K Ring ℤRHom K : Base K
50 35 49 syl φ g 0 0 A ℤRHom K : Base K
51 50 ffvelcdmda φ g 0 0 A i ℤRHom K i Base K
52 43 51 syl φ g 0 0 A i 0 A ℤRHom K i Base K
53 eqid algSc Poly 1 K = algSc Poly 1 K
54 11 53 47 37 ply1sclcl K Ring ℤRHom K i Base K algSc Poly 1 K ℤRHom K i Base Poly 1 K
55 36 52 54 syl2anc φ g 0 0 A i 0 A algSc Poly 1 K ℤRHom K i Base Poly 1 K
56 eqid + Poly 1 K = + Poly 1 K
57 37 56 mndcl Poly 1 K Mnd X Base Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
58 33 39 55 57 syl3anc φ g 0 0 A i 0 A X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
59 14 37 mgpbas Base Poly 1 K = Base mulGrp Poly 1 K
60 59 a1i φ g 0 0 A i 0 A Base Poly 1 K = Base mulGrp Poly 1 K
61 58 60 eleqtrd φ g 0 0 A i 0 A X + Poly 1 K algSc Poly 1 K ℤRHom K i Base mulGrp Poly 1 K
62 9 7 20 27 61 mulgnn0cld φ g 0 0 A i 0 A g i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base mulGrp Poly 1 K
63 62 ralrimiva φ g 0 0 A i 0 A g i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base mulGrp Poly 1 K
64 9 17 18 63 gsummptcl φ g 0 0 A mulGrp Poly 1 K i = 0 A g i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base mulGrp Poly 1 K
65 59 eqcomi Base mulGrp Poly 1 K = Base Poly 1 K
66 65 a1i φ g 0 0 A Base mulGrp Poly 1 K = Base Poly 1 K
67 64 66 eleqtrd φ g 0 0 A mulGrp Poly 1 K i = 0 A g i × ˙ X + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
68 67 8 fmptd φ G : 0 0 A Base Poly 1 K