Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1p5.1 |
|
2 |
|
aks6d1p5.2 |
|
3 |
|
aks6d1c5.3 |
|
4 |
|
aks6d1c5.4 |
|
5 |
|
aks6d1c5.5 |
|
6 |
|
aks6d1c5.6 |
|
7 |
|
aks6d1c5.7 |
|
8 |
|
aks6d1c5.8 |
|
9 |
|
eqid |
|
10 |
1
|
fldcrngd |
|
11 |
|
eqid |
|
12 |
11
|
ply1crng |
|
13 |
10 12
|
syl |
|
14 |
|
eqid |
|
15 |
14
|
crngmgp |
|
16 |
13 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
|
fzfid |
|
19 |
17
|
cmnmndd |
|
20 |
19
|
adantr |
|
21 |
|
nn0ex |
|
22 |
21
|
a1i |
|
23 |
|
ovexd |
|
24 |
22 23
|
elmapd |
|
25 |
24
|
biimpd |
|
26 |
25
|
imp |
|
27 |
26
|
ffvelcdmda |
|
28 |
13
|
crngringd |
|
29 |
28
|
ringcmnd |
|
30 |
|
cmnmnd |
|
31 |
29 30
|
syl |
|
32 |
31
|
adantr |
|
33 |
32
|
adantr |
|
34 |
10
|
crngringd |
|
35 |
34
|
adantr |
|
36 |
35
|
adantr |
|
37 |
|
eqid |
|
38 |
6 11 37
|
vr1cl |
|
39 |
36 38
|
syl |
|
40 |
|
simpl |
|
41 |
|
elfzelz |
|
42 |
41
|
adantl |
|
43 |
40 42
|
jca |
|
44 |
|
eqid |
|
45 |
44
|
zrhrhm |
|
46 |
|
zringbas |
|
47 |
|
eqid |
|
48 |
46 47
|
rhmf |
|
49 |
45 48
|
syl |
|
50 |
35 49
|
syl |
|
51 |
50
|
ffvelcdmda |
|
52 |
43 51
|
syl |
|
53 |
|
eqid |
|
54 |
11 53 47 37
|
ply1sclcl |
|
55 |
36 52 54
|
syl2anc |
|
56 |
|
eqid |
|
57 |
37 56
|
mndcl |
|
58 |
33 39 55 57
|
syl3anc |
|
59 |
14 37
|
mgpbas |
|
60 |
59
|
a1i |
|
61 |
58 60
|
eleqtrd |
|
62 |
9 7 20 27 61
|
mulgnn0cld |
|
63 |
62
|
ralrimiva |
|
64 |
9 17 18 63
|
gsummptcl |
|
65 |
59
|
eqcomi |
|
66 |
65
|
a1i |
|
67 |
64 66
|
eleqtrd |
|
68 |
67 8
|
fmptd |
|