| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1p5.1 |
|
| 2 |
|
aks6d1p5.2 |
|
| 3 |
|
aks6d1c5.3 |
|
| 4 |
|
aks6d1c5.4 |
|
| 5 |
|
aks6d1c5.5 |
|
| 6 |
|
aks6d1c5.6 |
|
| 7 |
|
aks6d1c5.7 |
|
| 8 |
|
aks6d1c5.8 |
|
| 9 |
|
eqid |
|
| 10 |
1
|
fldcrngd |
|
| 11 |
|
eqid |
|
| 12 |
11
|
ply1crng |
|
| 13 |
10 12
|
syl |
|
| 14 |
|
eqid |
|
| 15 |
14
|
crngmgp |
|
| 16 |
13 15
|
syl |
|
| 17 |
16
|
adantr |
|
| 18 |
|
fzfid |
|
| 19 |
17
|
cmnmndd |
|
| 20 |
19
|
adantr |
|
| 21 |
|
nn0ex |
|
| 22 |
21
|
a1i |
|
| 23 |
|
ovexd |
|
| 24 |
22 23
|
elmapd |
|
| 25 |
24
|
biimpd |
|
| 26 |
25
|
imp |
|
| 27 |
26
|
ffvelcdmda |
|
| 28 |
13
|
crngringd |
|
| 29 |
28
|
ringcmnd |
|
| 30 |
|
cmnmnd |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
adantr |
|
| 34 |
10
|
crngringd |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
adantr |
|
| 37 |
|
eqid |
|
| 38 |
6 11 37
|
vr1cl |
|
| 39 |
36 38
|
syl |
|
| 40 |
|
simpl |
|
| 41 |
|
elfzelz |
|
| 42 |
41
|
adantl |
|
| 43 |
40 42
|
jca |
|
| 44 |
|
eqid |
|
| 45 |
44
|
zrhrhm |
|
| 46 |
|
zringbas |
|
| 47 |
|
eqid |
|
| 48 |
46 47
|
rhmf |
|
| 49 |
45 48
|
syl |
|
| 50 |
35 49
|
syl |
|
| 51 |
50
|
ffvelcdmda |
|
| 52 |
43 51
|
syl |
|
| 53 |
|
eqid |
|
| 54 |
11 53 47 37
|
ply1sclcl |
|
| 55 |
36 52 54
|
syl2anc |
|
| 56 |
|
eqid |
|
| 57 |
37 56
|
mndcl |
|
| 58 |
33 39 55 57
|
syl3anc |
|
| 59 |
14 37
|
mgpbas |
|
| 60 |
59
|
a1i |
|
| 61 |
58 60
|
eleqtrd |
|
| 62 |
9 7 20 27 61
|
mulgnn0cld |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
9 17 18 63
|
gsummptcl |
|
| 65 |
59
|
eqcomi |
|
| 66 |
65
|
a1i |
|
| 67 |
64 66
|
eleqtrd |
|
| 68 |
67 8
|
fmptd |
|