| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnindd.1 |
|- ( x = 1 -> ( ps <-> ch ) ) |
| 2 |
|
nnindd.2 |
|- ( x = y -> ( ps <-> th ) ) |
| 3 |
|
nnindd.3 |
|- ( x = ( y + 1 ) -> ( ps <-> ta ) ) |
| 4 |
|
nnindd.4 |
|- ( x = A -> ( ps <-> et ) ) |
| 5 |
|
nnindd.5 |
|- ( ph -> ch ) |
| 6 |
|
nnindd.6 |
|- ( ( ( ph /\ y e. NN ) /\ th ) -> ta ) |
| 7 |
1
|
imbi2d |
|- ( x = 1 -> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) |
| 8 |
2
|
imbi2d |
|- ( x = y -> ( ( ph -> ps ) <-> ( ph -> th ) ) ) |
| 9 |
3
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ph -> ps ) <-> ( ph -> ta ) ) ) |
| 10 |
4
|
imbi2d |
|- ( x = A -> ( ( ph -> ps ) <-> ( ph -> et ) ) ) |
| 11 |
6
|
ex |
|- ( ( ph /\ y e. NN ) -> ( th -> ta ) ) |
| 12 |
11
|
expcom |
|- ( y e. NN -> ( ph -> ( th -> ta ) ) ) |
| 13 |
12
|
a2d |
|- ( y e. NN -> ( ( ph -> th ) -> ( ph -> ta ) ) ) |
| 14 |
7 8 9 10 5 13
|
nnind |
|- ( A e. NN -> ( ph -> et ) ) |
| 15 |
14
|
impcom |
|- ( ( ph /\ A e. NN ) -> et ) |