| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							orc | 
							 |-  ( x = 1 -> ( x = 1 \/ ( x - 1 ) e. NN ) )  | 
						
						
							| 2 | 
							
								
							 | 
							1cnd | 
							 |-  ( x = 1 -> 1 e. CC )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							2thd | 
							 |-  ( x = 1 -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> 1 e. CC ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( x = y -> ( x = 1 <-> y = 1 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = y -> ( x - 1 ) = ( y - 1 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eleq1d | 
							 |-  ( x = y -> ( ( x - 1 ) e. NN <-> ( y - 1 ) e. NN ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							orbi12d | 
							 |-  ( x = y -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( y = 1 \/ ( y - 1 ) e. NN ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( x = ( y + 1 ) -> ( x = 1 <-> ( y + 1 ) = 1 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = ( y + 1 ) -> ( x - 1 ) = ( ( y + 1 ) - 1 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eleq1d | 
							 |-  ( x = ( y + 1 ) -> ( ( x - 1 ) e. NN <-> ( ( y + 1 ) - 1 ) e. NN ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							orbi12d | 
							 |-  ( x = ( y + 1 ) -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( x = A -> ( x = 1 <-> A = 1 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = A -> ( x - 1 ) = ( A - 1 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eleq1d | 
							 |-  ( x = A -> ( ( x - 1 ) e. NN <-> ( A - 1 ) e. NN ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							orbi12d | 
							 |-  ( x = A -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( A = 1 \/ ( A - 1 ) e. NN ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 17 | 
							
								
							 | 
							nncn | 
							 |-  ( y e. NN -> y e. CC )  | 
						
						
							| 18 | 
							
								
							 | 
							pncan | 
							 |-  ( ( y e. CC /\ 1 e. CC ) -> ( ( y + 1 ) - 1 ) = y )  | 
						
						
							| 19 | 
							
								17 16 18
							 | 
							sylancl | 
							 |-  ( y e. NN -> ( ( y + 1 ) - 1 ) = y )  | 
						
						
							| 20 | 
							
								
							 | 
							id | 
							 |-  ( y e. NN -> y e. NN )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqeltrd | 
							 |-  ( y e. NN -> ( ( y + 1 ) - 1 ) e. NN )  | 
						
						
							| 22 | 
							
								21
							 | 
							olcd | 
							 |-  ( y e. NN -> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							a1d | 
							 |-  ( y e. NN -> ( ( y = 1 \/ ( y - 1 ) e. NN ) -> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) )  | 
						
						
							| 24 | 
							
								3 7 11 15 16 23
							 | 
							nnind | 
							 |-  ( A e. NN -> ( A = 1 \/ ( A - 1 ) e. NN ) )  |