| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nn1suc.1 | 
							 |-  ( x = 1 -> ( ph <-> ps ) )  | 
						
						
							| 2 | 
							
								
							 | 
							nn1suc.3 | 
							 |-  ( x = ( y + 1 ) -> ( ph <-> ch ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nn1suc.4 | 
							 |-  ( x = A -> ( ph <-> th ) )  | 
						
						
							| 4 | 
							
								
							 | 
							nn1suc.5 | 
							 |-  ps  | 
						
						
							| 5 | 
							
								
							 | 
							nn1suc.6 | 
							 |-  ( y e. NN -> ch )  | 
						
						
							| 6 | 
							
								
							 | 
							1ex | 
							 |-  1 e. _V  | 
						
						
							| 7 | 
							
								6 1
							 | 
							sbcie | 
							 |-  ( [. 1 / x ]. ph <-> ps )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							mpbir | 
							 |-  [. 1 / x ]. ph  | 
						
						
							| 9 | 
							
								
							 | 
							1nn | 
							 |-  1 e. NN  | 
						
						
							| 10 | 
							
								
							 | 
							eleq1 | 
							 |-  ( A = 1 -> ( A e. NN <-> 1 e. NN ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mpbiri | 
							 |-  ( A = 1 -> A e. NN )  | 
						
						
							| 12 | 
							
								3
							 | 
							sbcieg | 
							 |-  ( A e. NN -> ( [. A / x ]. ph <-> th ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							 |-  ( A = 1 -> ( [. A / x ]. ph <-> th ) )  | 
						
						
							| 14 | 
							
								
							 | 
							dfsbcq | 
							 |-  ( A = 1 -> ( [. A / x ]. ph <-> [. 1 / x ]. ph ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							bitr3d | 
							 |-  ( A = 1 -> ( th <-> [. 1 / x ]. ph ) )  | 
						
						
							| 16 | 
							
								8 15
							 | 
							mpbiri | 
							 |-  ( A = 1 -> th )  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							 |-  ( A e. NN -> ( A = 1 -> th ) )  | 
						
						
							| 18 | 
							
								
							 | 
							ovex | 
							 |-  ( y + 1 ) e. _V  | 
						
						
							| 19 | 
							
								18 2
							 | 
							sbcie | 
							 |-  ( [. ( y + 1 ) / x ]. ph <-> ch )  | 
						
						
							| 20 | 
							
								
							 | 
							oveq1 | 
							 |-  ( y = ( A - 1 ) -> ( y + 1 ) = ( ( A - 1 ) + 1 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							sbceq1d | 
							 |-  ( y = ( A - 1 ) -> ( [. ( y + 1 ) / x ]. ph <-> [. ( ( A - 1 ) + 1 ) / x ]. ph ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							bitr3id | 
							 |-  ( y = ( A - 1 ) -> ( ch <-> [. ( ( A - 1 ) + 1 ) / x ]. ph ) )  | 
						
						
							| 23 | 
							
								22 5
							 | 
							vtoclga | 
							 |-  ( ( A - 1 ) e. NN -> [. ( ( A - 1 ) + 1 ) / x ]. ph )  | 
						
						
							| 24 | 
							
								
							 | 
							nncn | 
							 |-  ( A e. NN -> A e. CC )  | 
						
						
							| 25 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 26 | 
							
								
							 | 
							npcan | 
							 |-  ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) + 1 ) = A )  | 
						
						
							| 27 | 
							
								24 25 26
							 | 
							sylancl | 
							 |-  ( A e. NN -> ( ( A - 1 ) + 1 ) = A )  | 
						
						
							| 28 | 
							
								27
							 | 
							sbceq1d | 
							 |-  ( A e. NN -> ( [. ( ( A - 1 ) + 1 ) / x ]. ph <-> [. A / x ]. ph ) )  | 
						
						
							| 29 | 
							
								28 12
							 | 
							bitrd | 
							 |-  ( A e. NN -> ( [. ( ( A - 1 ) + 1 ) / x ]. ph <-> th ) )  | 
						
						
							| 30 | 
							
								23 29
							 | 
							imbitrid | 
							 |-  ( A e. NN -> ( ( A - 1 ) e. NN -> th ) )  | 
						
						
							| 31 | 
							
								
							 | 
							nn1m1nn | 
							 |-  ( A e. NN -> ( A = 1 \/ ( A - 1 ) e. NN ) )  | 
						
						
							| 32 | 
							
								17 30 31
							 | 
							mpjaod | 
							 |-  ( A e. NN -> th )  |