Step |
Hyp |
Ref |
Expression |
1 |
|
rspsbc |
|- ( A e. B -> ( A. x e. B C =/= D -> [. A / x ]. C =/= D ) ) |
2 |
|
df-ne |
|- ( C =/= D <-> -. C = D ) |
3 |
2
|
sbcbii |
|- ( [. A / x ]. C =/= D <-> [. A / x ]. -. C = D ) |
4 |
3
|
a1i |
|- ( A e. B -> ( [. A / x ]. C =/= D <-> [. A / x ]. -. C = D ) ) |
5 |
|
sbcng |
|- ( A e. B -> ( [. A / x ]. -. C = D <-> -. [. A / x ]. C = D ) ) |
6 |
|
sbceq1g |
|- ( A e. B -> ( [. A / x ]. C = D <-> [_ A / x ]_ C = D ) ) |
7 |
6
|
notbid |
|- ( A e. B -> ( -. [. A / x ]. C = D <-> -. [_ A / x ]_ C = D ) ) |
8 |
5 7
|
bitrd |
|- ( A e. B -> ( [. A / x ]. -. C = D <-> -. [_ A / x ]_ C = D ) ) |
9 |
4 8
|
bitrd |
|- ( A e. B -> ( [. A / x ]. C =/= D <-> -. [_ A / x ]_ C = D ) ) |
10 |
|
biidd |
|- ( A e. B -> ( [_ A / x ]_ C = D <-> [_ A / x ]_ C = D ) ) |
11 |
10
|
necon3bbid |
|- ( A e. B -> ( -. [_ A / x ]_ C = D <-> [_ A / x ]_ C =/= D ) ) |
12 |
9 11
|
bitrd |
|- ( A e. B -> ( [. A / x ]. C =/= D <-> [_ A / x ]_ C =/= D ) ) |
13 |
1 12
|
sylibd |
|- ( A e. B -> ( A. x e. B C =/= D -> [_ A / x ]_ C =/= D ) ) |
14 |
13
|
imp |
|- ( ( A e. B /\ A. x e. B C =/= D ) -> [_ A / x ]_ C =/= D ) |