| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspsbc |  |-  ( A e. B -> ( A. x e. B C =/= D -> [. A / x ]. C =/= D ) ) | 
						
							| 2 |  | df-ne |  |-  ( C =/= D <-> -. C = D ) | 
						
							| 3 | 2 | sbcbii |  |-  ( [. A / x ]. C =/= D <-> [. A / x ]. -. C = D ) | 
						
							| 4 | 3 | a1i |  |-  ( A e. B -> ( [. A / x ]. C =/= D <-> [. A / x ]. -. C = D ) ) | 
						
							| 5 |  | sbcng |  |-  ( A e. B -> ( [. A / x ]. -. C = D <-> -. [. A / x ]. C = D ) ) | 
						
							| 6 |  | sbceq1g |  |-  ( A e. B -> ( [. A / x ]. C = D <-> [_ A / x ]_ C = D ) ) | 
						
							| 7 | 6 | notbid |  |-  ( A e. B -> ( -. [. A / x ]. C = D <-> -. [_ A / x ]_ C = D ) ) | 
						
							| 8 | 5 7 | bitrd |  |-  ( A e. B -> ( [. A / x ]. -. C = D <-> -. [_ A / x ]_ C = D ) ) | 
						
							| 9 | 4 8 | bitrd |  |-  ( A e. B -> ( [. A / x ]. C =/= D <-> -. [_ A / x ]_ C = D ) ) | 
						
							| 10 |  | biidd |  |-  ( A e. B -> ( [_ A / x ]_ C = D <-> [_ A / x ]_ C = D ) ) | 
						
							| 11 | 10 | necon3bbid |  |-  ( A e. B -> ( -. [_ A / x ]_ C = D <-> [_ A / x ]_ C =/= D ) ) | 
						
							| 12 | 9 11 | bitrd |  |-  ( A e. B -> ( [. A / x ]. C =/= D <-> [_ A / x ]_ C =/= D ) ) | 
						
							| 13 | 1 12 | sylibd |  |-  ( A e. B -> ( A. x e. B C =/= D -> [_ A / x ]_ C =/= D ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( A e. B /\ A. x e. B C =/= D ) -> [_ A / x ]_ C =/= D ) |