Metamath Proof Explorer


Theorem rspcsbnea

Description: Special case related to rspsbc . (Contributed by metakunt, 5-May-2025)

Ref Expression
Assertion rspcsbnea
|- ( ( A e. B /\ A. x e. B C =/= D ) -> [_ A / x ]_ C =/= D )

Proof

Step Hyp Ref Expression
1 rspsbc
 |-  ( A e. B -> ( A. x e. B C =/= D -> [. A / x ]. C =/= D ) )
2 df-ne
 |-  ( C =/= D <-> -. C = D )
3 2 sbcbii
 |-  ( [. A / x ]. C =/= D <-> [. A / x ]. -. C = D )
4 3 a1i
 |-  ( A e. B -> ( [. A / x ]. C =/= D <-> [. A / x ]. -. C = D ) )
5 sbcng
 |-  ( A e. B -> ( [. A / x ]. -. C = D <-> -. [. A / x ]. C = D ) )
6 sbceq1g
 |-  ( A e. B -> ( [. A / x ]. C = D <-> [_ A / x ]_ C = D ) )
7 6 notbid
 |-  ( A e. B -> ( -. [. A / x ]. C = D <-> -. [_ A / x ]_ C = D ) )
8 5 7 bitrd
 |-  ( A e. B -> ( [. A / x ]. -. C = D <-> -. [_ A / x ]_ C = D ) )
9 4 8 bitrd
 |-  ( A e. B -> ( [. A / x ]. C =/= D <-> -. [_ A / x ]_ C = D ) )
10 biidd
 |-  ( A e. B -> ( [_ A / x ]_ C = D <-> [_ A / x ]_ C = D ) )
11 10 necon3bbid
 |-  ( A e. B -> ( -. [_ A / x ]_ C = D <-> [_ A / x ]_ C =/= D ) )
12 9 11 bitrd
 |-  ( A e. B -> ( [. A / x ]. C =/= D <-> [_ A / x ]_ C =/= D ) )
13 1 12 sylibd
 |-  ( A e. B -> ( A. x e. B C =/= D -> [_ A / x ]_ C =/= D ) )
14 13 imp
 |-  ( ( A e. B /\ A. x e. B C =/= D ) -> [_ A / x ]_ C =/= D )