Metamath Proof Explorer


Theorem aks6d1c2lem3

Description: Lemma for aks6d1c2 to simplify context. (Contributed by metakunt, 1-May-2025)

Ref Expression
Hypotheses aks6d1c2.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c2.2 P = chr K
aks6d1c2.3 φ K Field
aks6d1c2.4 φ P
aks6d1c2.5 φ R
aks6d1c2.6 φ N
aks6d1c2.7 φ P N
aks6d1c2.8 φ N gcd R = 1
aks6d1c2.9 φ F : 0 A 0
aks6d1c2.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
aks6d1c2.11 φ A 0
aks6d1c2.12 E = k 0 , l 0 P k N P l
aks6d1c2.13 L = ℤRHom /R
aks6d1c2.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
aks6d1c2.15 φ x Base K P mulGrp K x K RingIso K
aks6d1c2.16 φ M mulGrp K PrimRoots R
aks6d1c2.17 H = h 0 0 A eval 1 K G h M
aks6d1c2.18 B = L E 0 × 0
aks6d1c2.19 C = E 0 B × 0 B
aks6d1c2.20 φ I C
aks6d1c2.21 φ J C
aks6d1c2.22 φ I < J
aks6d1c2.23 × ˙ = mulGrp Poly 1 K
aks6d1c2.24 X = var 1 K
aks6d1c2.25 S = J × ˙ X - Poly 1 K I × ˙ X
aks6d1c2.26 φ U
aks6d1c2.27 φ J = I + U R
aks6d1c2p3.1 φ s 0 0 A
aks6d1c2p3.2 φ r 0 B
aks6d1c2p3.3 φ o 0 B
aks6d1c2p3.4 φ J = r E o
aks6d1c2p3.5 φ p 0 B
aks6d1c2p3.6 φ q 0 B
aks6d1c2p3.7 φ I = p E q
aks6d1c2p3.8 φ I 0
Assertion aks6d1c2lem3 φ J mulGrp K eval 1 K G s M = I mulGrp K eval 1 K G s M

Proof

Step Hyp Ref Expression
1 aks6d1c2.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c2.2 P = chr K
3 aks6d1c2.3 φ K Field
4 aks6d1c2.4 φ P
5 aks6d1c2.5 φ R
6 aks6d1c2.6 φ N
7 aks6d1c2.7 φ P N
8 aks6d1c2.8 φ N gcd R = 1
9 aks6d1c2.9 φ F : 0 A 0
10 aks6d1c2.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
11 aks6d1c2.11 φ A 0
12 aks6d1c2.12 E = k 0 , l 0 P k N P l
13 aks6d1c2.13 L = ℤRHom /R
14 aks6d1c2.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
15 aks6d1c2.15 φ x Base K P mulGrp K x K RingIso K
16 aks6d1c2.16 φ M mulGrp K PrimRoots R
17 aks6d1c2.17 H = h 0 0 A eval 1 K G h M
18 aks6d1c2.18 B = L E 0 × 0
19 aks6d1c2.19 C = E 0 B × 0 B
20 aks6d1c2.20 φ I C
21 aks6d1c2.21 φ J C
22 aks6d1c2.22 φ I < J
23 aks6d1c2.23 × ˙ = mulGrp Poly 1 K
24 aks6d1c2.24 X = var 1 K
25 aks6d1c2.25 S = J × ˙ X - Poly 1 K I × ˙ X
26 aks6d1c2.26 φ U
27 aks6d1c2.27 φ J = I + U R
28 aks6d1c2p3.1 φ s 0 0 A
29 aks6d1c2p3.2 φ r 0 B
30 aks6d1c2p3.3 φ o 0 B
31 aks6d1c2p3.4 φ J = r E o
32 aks6d1c2p3.5 φ p 0 B
33 aks6d1c2p3.6 φ q 0 B
34 aks6d1c2p3.7 φ I = p E q
35 aks6d1c2p3.8 φ I 0
36 12 a1i φ E = k 0 , l 0 P k N P l
37 simprl φ k = r l = o k = r
38 37 oveq2d φ k = r l = o P k = P r
39 simprr φ k = r l = o l = o
40 39 oveq2d φ k = r l = o N P l = N P o
41 38 40 oveq12d φ k = r l = o P k N P l = P r N P o
42 elfznn0 r 0 B r 0
43 29 42 syl φ r 0
44 elfznn0 o 0 B o 0
45 30 44 syl φ o 0
46 ovexd φ P r N P o V
47 36 41 43 45 46 ovmpod φ r E o = P r N P o
48 31 47 eqtrd φ J = P r N P o
49 48 oveq1d φ J mulGrp K eval 1 K G s M = P r N P o mulGrp K eval 1 K G s M
50 simprl φ k = p l = q k = p
51 50 oveq2d φ k = p l = q P k = P p
52 simprr φ k = p l = q l = q
53 52 oveq2d φ k = p l = q N P l = N P q
54 51 53 oveq12d φ k = p l = q P k N P l = P p N P q
55 elfznn0 p 0 B p 0
56 32 55 syl φ p 0
57 elfznn0 q 0 B q 0
58 33 57 syl φ q 0
59 ovexd φ P p N P q V
60 36 54 56 58 59 ovmpod φ p E q = P p N P q
61 34 60 eqtrd φ I = P p N P q
62 61 oveq1d φ I mulGrp K eval 1 K G s M = P p N P q mulGrp K eval 1 K G s M
63 fveq2 y = M eval 1 K G s y = eval 1 K G s M
64 63 oveq2d y = M P p N P q mulGrp K eval 1 K G s y = P p N P q mulGrp K eval 1 K G s M
65 oveq2 y = M P p N P q mulGrp K y = P p N P q mulGrp K M
66 65 fveq2d y = M eval 1 K G s P p N P q mulGrp K y = eval 1 K G s P p N P q mulGrp K M
67 64 66 eqeq12d y = M P p N P q mulGrp K eval 1 K G s y = eval 1 K G s P p N P q mulGrp K y P p N P q mulGrp K eval 1 K G s M = eval 1 K G s P p N P q mulGrp K M
68 nn0ex 0 V
69 68 a1i φ 0 V
70 ovexd φ 0 A V
71 elmapg 0 V 0 A V s 0 0 A s : 0 A 0
72 69 70 71 syl2anc φ s 0 0 A s : 0 A 0
73 28 72 mpbid φ s : 0 A 0
74 eqid P p N P q = P p N P q
75 1 2 3 4 5 6 7 8 73 10 11 56 58 74 14 15 aks6d1c1rh φ P p N P q ˙ G s
76 1 75 aks6d1c1p1rcl φ P p N P q G s Base Poly 1 K
77 76 simprd φ G s Base Poly 1 K
78 76 simpld φ P p N P q
79 1 77 78 aks6d1c1p1 φ P p N P q ˙ G s y mulGrp K PrimRoots R P p N P q mulGrp K eval 1 K G s y = eval 1 K G s P p N P q mulGrp K y
80 75 79 mpbid φ y mulGrp K PrimRoots R P p N P q mulGrp K eval 1 K G s y = eval 1 K G s P p N P q mulGrp K y
81 67 80 16 rspcdva φ P p N P q mulGrp K eval 1 K G s M = eval 1 K G s P p N P q mulGrp K M
82 61 eqcomd φ P p N P q = I
83 82 oveq1d φ P p N P q mulGrp K M = I mulGrp K M
84 48 eqcomd φ P r N P o = J
85 84 oveq1d φ P r N P o mulGrp K M = J mulGrp K M
86 27 oveq1d φ J mulGrp K M = I + U R mulGrp K M
87 3 fldcrngd φ K CRing
88 crngring K CRing K Ring
89 87 88 syl φ K Ring
90 eqid mulGrp K = mulGrp K
91 90 ringmgp K Ring mulGrp K Mnd
92 89 91 syl φ mulGrp K Mnd
93 26 nnnn0d φ U 0
94 5 nnnn0d φ R 0
95 93 94 nn0mulcld φ U R 0
96 90 crngmgp K CRing mulGrp K CMnd
97 87 96 syl φ mulGrp K CMnd
98 eqid mulGrp K = mulGrp K
99 97 94 98 isprimroot φ M mulGrp K PrimRoots R M Base mulGrp K R mulGrp K M = 0 mulGrp K v 0 v mulGrp K M = 0 mulGrp K R v
100 99 biimpd φ M mulGrp K PrimRoots R M Base mulGrp K R mulGrp K M = 0 mulGrp K v 0 v mulGrp K M = 0 mulGrp K R v
101 16 100 mpd φ M Base mulGrp K R mulGrp K M = 0 mulGrp K v 0 v mulGrp K M = 0 mulGrp K R v
102 101 simp1d φ M Base mulGrp K
103 35 95 102 3jca φ I 0 U R 0 M Base mulGrp K
104 eqid Base mulGrp K = Base mulGrp K
105 eqid + mulGrp K = + mulGrp K
106 104 98 105 mulgnn0dir mulGrp K Mnd I 0 U R 0 M Base mulGrp K I + U R mulGrp K M = I mulGrp K M + mulGrp K U R mulGrp K M
107 92 103 106 syl2anc φ I + U R mulGrp K M = I mulGrp K M + mulGrp K U R mulGrp K M
108 93 94 102 3jca φ U 0 R 0 M Base mulGrp K
109 104 98 mulgnn0ass mulGrp K Mnd U 0 R 0 M Base mulGrp K U R mulGrp K M = U mulGrp K R mulGrp K M
110 92 108 109 syl2anc φ U R mulGrp K M = U mulGrp K R mulGrp K M
111 101 simp2d φ R mulGrp K M = 0 mulGrp K
112 111 oveq2d φ U mulGrp K R mulGrp K M = U mulGrp K 0 mulGrp K
113 eqid 0 mulGrp K = 0 mulGrp K
114 104 98 113 mulgnn0z mulGrp K Mnd U 0 U mulGrp K 0 mulGrp K = 0 mulGrp K
115 92 93 114 syl2anc φ U mulGrp K 0 mulGrp K = 0 mulGrp K
116 112 115 eqtrd φ U mulGrp K R mulGrp K M = 0 mulGrp K
117 110 116 eqtrd φ U R mulGrp K M = 0 mulGrp K
118 117 oveq2d φ I mulGrp K M + mulGrp K U R mulGrp K M = I mulGrp K M + mulGrp K 0 mulGrp K
119 104 98 92 35 102 mulgnn0cld φ I mulGrp K M Base mulGrp K
120 104 105 113 mndrid mulGrp K Mnd I mulGrp K M Base mulGrp K I mulGrp K M + mulGrp K 0 mulGrp K = I mulGrp K M
121 92 119 120 syl2anc φ I mulGrp K M + mulGrp K 0 mulGrp K = I mulGrp K M
122 118 121 eqtrd φ I mulGrp K M + mulGrp K U R mulGrp K M = I mulGrp K M
123 107 122 eqtrd φ I + U R mulGrp K M = I mulGrp K M
124 86 123 eqtrd φ J mulGrp K M = I mulGrp K M
125 85 124 eqtr2d φ I mulGrp K M = P r N P o mulGrp K M
126 83 125 eqtrd φ P p N P q mulGrp K M = P r N P o mulGrp K M
127 126 fveq2d φ eval 1 K G s P p N P q mulGrp K M = eval 1 K G s P r N P o mulGrp K M
128 63 oveq2d y = M P r N P o mulGrp K eval 1 K G s y = P r N P o mulGrp K eval 1 K G s M
129 oveq2 y = M P r N P o mulGrp K y = P r N P o mulGrp K M
130 129 fveq2d y = M eval 1 K G s P r N P o mulGrp K y = eval 1 K G s P r N P o mulGrp K M
131 128 130 eqeq12d y = M P r N P o mulGrp K eval 1 K G s y = eval 1 K G s P r N P o mulGrp K y P r N P o mulGrp K eval 1 K G s M = eval 1 K G s P r N P o mulGrp K M
132 eqid P r N P o = P r N P o
133 1 2 3 4 5 6 7 8 73 10 11 43 45 132 14 15 aks6d1c1rh φ P r N P o ˙ G s
134 1 133 aks6d1c1p1rcl φ P r N P o G s Base Poly 1 K
135 134 simpld φ P r N P o
136 1 77 135 aks6d1c1p1 φ P r N P o ˙ G s y mulGrp K PrimRoots R P r N P o mulGrp K eval 1 K G s y = eval 1 K G s P r N P o mulGrp K y
137 133 136 mpbid φ y mulGrp K PrimRoots R P r N P o mulGrp K eval 1 K G s y = eval 1 K G s P r N P o mulGrp K y
138 131 137 16 rspcdva φ P r N P o mulGrp K eval 1 K G s M = eval 1 K G s P r N P o mulGrp K M
139 138 eqcomd φ eval 1 K G s P r N P o mulGrp K M = P r N P o mulGrp K eval 1 K G s M
140 127 139 eqtrd φ eval 1 K G s P p N P q mulGrp K M = P r N P o mulGrp K eval 1 K G s M
141 81 140 eqtrd φ P p N P q mulGrp K eval 1 K G s M = P r N P o mulGrp K eval 1 K G s M
142 62 141 eqtr2d φ P r N P o mulGrp K eval 1 K G s M = I mulGrp K eval 1 K G s M
143 49 142 eqtrd φ J mulGrp K eval 1 K G s M = I mulGrp K eval 1 K G s M