| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1addle.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
deg1addle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 3 |
|
deg1addle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
deg1suble.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 5 |
|
deg1suble.m |
⊢ − = ( -g ‘ 𝑌 ) |
| 6 |
|
deg1suble.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 7 |
|
deg1suble.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 8 |
|
deg1sub.l |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) < ( 𝐷 ‘ 𝐹 ) ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
| 10 |
|
eqid |
⊢ ( invg ‘ 𝑌 ) = ( invg ‘ 𝑌 ) |
| 11 |
4 9 10 5
|
grpsubval |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
| 12 |
6 7 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) = ( 𝐷 ‘ ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) ) |
| 14 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Ring ) |
| 15 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
| 16 |
3 14 15
|
3syl |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 17 |
4 10
|
grpinvcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵 ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ∈ 𝐵 ) |
| 18 |
16 7 17
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ∈ 𝐵 ) |
| 19 |
1 2 3 4 10 7
|
deg1invg |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) = ( 𝐷 ‘ 𝐺 ) ) |
| 20 |
19 8
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) < ( 𝐷 ‘ 𝐹 ) ) |
| 21 |
1 2 3 4 9 6 18 20
|
deg1add |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) = ( 𝐷 ‘ 𝐹 ) ) |
| 22 |
13 21
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) = ( 𝐷 ‘ 𝐹 ) ) |