| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1addle.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
deg1addle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 3 |
|
deg1addle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
deg1invg.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 5 |
|
deg1invg.n |
⊢ 𝑁 = ( invg ‘ 𝑌 ) |
| 6 |
|
deg1invg.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 7 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ LMod ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ LMod ) |
| 9 |
1
|
ply1sca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑌 ) |
| 10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ ( I ‘ 𝑅 ) ) = ( 1r ‘ ( I ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 13 |
12
|
grpinvfvi |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ ( I ‘ 𝑅 ) ) |
| 14 |
4 5 9 10 11 13
|
lmodvneg1 |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝐹 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) ( ·𝑠 ‘ 𝑌 ) 𝐹 ) = ( 𝑁 ‘ 𝐹 ) ) |
| 15 |
8 6 14
|
syl2anc |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) ( ·𝑠 ‘ 𝑌 ) 𝐹 ) = ( 𝑁 ‘ 𝐹 ) ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) ( ·𝑠 ‘ 𝑌 ) 𝐹 ) ) = ( 𝐷 ‘ ( 𝑁 ‘ 𝐹 ) ) ) |
| 17 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
| 18 |
|
fvi |
⊢ ( 𝑅 ∈ Ring → ( I ‘ 𝑅 ) = 𝑅 ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → ( I ‘ 𝑅 ) = 𝑅 ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ ( I ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 22 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 23 |
17 22
|
unitrrg |
⊢ ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
| 24 |
3 23
|
syl |
⊢ ( 𝜑 → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
| 25 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 26 |
22 25
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 27 |
22 12
|
unitnegcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 28 |
3 26 27
|
syl2anc2 |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 29 |
24 28
|
sseldd |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
| 30 |
21 29
|
eqeltrd |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
| 31 |
1 2 3 4 17 10 30 6
|
deg1vsca |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) ( ·𝑠 ‘ 𝑌 ) 𝐹 ) ) = ( 𝐷 ‘ 𝐹 ) ) |
| 32 |
16 31
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑁 ‘ 𝐹 ) ) = ( 𝐷 ‘ 𝐹 ) ) |