Metamath Proof Explorer


Theorem deg1invg

Description: The degree of the negated polynomial is the same as the original. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y 𝑌 = ( Poly1𝑅 )
deg1addle.d 𝐷 = ( deg1𝑅 )
deg1addle.r ( 𝜑𝑅 ∈ Ring )
deg1invg.b 𝐵 = ( Base ‘ 𝑌 )
deg1invg.n 𝑁 = ( invg𝑌 )
deg1invg.f ( 𝜑𝐹𝐵 )
Assertion deg1invg ( 𝜑 → ( 𝐷 ‘ ( 𝑁𝐹 ) ) = ( 𝐷𝐹 ) )

Proof

Step Hyp Ref Expression
1 deg1addle.y 𝑌 = ( Poly1𝑅 )
2 deg1addle.d 𝐷 = ( deg1𝑅 )
3 deg1addle.r ( 𝜑𝑅 ∈ Ring )
4 deg1invg.b 𝐵 = ( Base ‘ 𝑌 )
5 deg1invg.n 𝑁 = ( invg𝑌 )
6 deg1invg.f ( 𝜑𝐹𝐵 )
7 1 ply1lmod ( 𝑅 ∈ Ring → 𝑌 ∈ LMod )
8 3 7 syl ( 𝜑𝑌 ∈ LMod )
9 1 ply1sca2 ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑌 )
10 eqid ( ·𝑠𝑌 ) = ( ·𝑠𝑌 )
11 eqid ( 1r ‘ ( I ‘ 𝑅 ) ) = ( 1r ‘ ( I ‘ 𝑅 ) )
12 eqid ( invg𝑅 ) = ( invg𝑅 )
13 12 grpinvfvi ( invg𝑅 ) = ( invg ‘ ( I ‘ 𝑅 ) )
14 4 5 9 10 11 13 lmodvneg1 ( ( 𝑌 ∈ LMod ∧ 𝐹𝐵 ) → ( ( ( invg𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) ( ·𝑠𝑌 ) 𝐹 ) = ( 𝑁𝐹 ) )
15 8 6 14 syl2anc ( 𝜑 → ( ( ( invg𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) ( ·𝑠𝑌 ) 𝐹 ) = ( 𝑁𝐹 ) )
16 15 fveq2d ( 𝜑 → ( 𝐷 ‘ ( ( ( invg𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) ( ·𝑠𝑌 ) 𝐹 ) ) = ( 𝐷 ‘ ( 𝑁𝐹 ) ) )
17 eqid ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 )
18 fvi ( 𝑅 ∈ Ring → ( I ‘ 𝑅 ) = 𝑅 )
19 3 18 syl ( 𝜑 → ( I ‘ 𝑅 ) = 𝑅 )
20 19 fveq2d ( 𝜑 → ( 1r ‘ ( I ‘ 𝑅 ) ) = ( 1r𝑅 ) )
21 20 fveq2d ( 𝜑 → ( ( invg𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) = ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) )
22 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
23 17 22 unitrrg ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) )
24 3 23 syl ( 𝜑 → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) )
25 eqid ( 1r𝑅 ) = ( 1r𝑅 )
26 22 25 1unit ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Unit ‘ 𝑅 ) )
27 22 12 unitnegcl ( ( 𝑅 ∈ Ring ∧ ( 1r𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) )
28 3 26 27 syl2anc2 ( 𝜑 → ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) )
29 24 28 sseldd ( 𝜑 → ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ( RLReg ‘ 𝑅 ) )
30 21 29 eqeltrd ( 𝜑 → ( ( invg𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) ∈ ( RLReg ‘ 𝑅 ) )
31 1 2 3 4 17 10 30 6 deg1vsca ( 𝜑 → ( 𝐷 ‘ ( ( ( invg𝑅 ) ‘ ( 1r ‘ ( I ‘ 𝑅 ) ) ) ( ·𝑠𝑌 ) 𝐹 ) ) = ( 𝐷𝐹 ) )
32 16 31 eqtr3d ( 𝜑 → ( 𝐷 ‘ ( 𝑁𝐹 ) ) = ( 𝐷𝐹 ) )