Metamath Proof Explorer


Theorem unitnegcl

Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses unitnegcl.1 𝑈 = ( Unit ‘ 𝑅 )
unitnegcl.2 𝑁 = ( invg𝑅 )
Assertion unitnegcl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 unitnegcl.1 𝑈 = ( Unit ‘ 𝑅 )
2 unitnegcl.2 𝑁 = ( invg𝑅 )
3 simpl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → 𝑅 ∈ Ring )
4 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 5 1 unitcl ( 𝑋𝑈𝑋 ∈ ( Base ‘ 𝑅 ) )
7 5 2 grpinvcl ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁𝑋 ) ∈ ( Base ‘ 𝑅 ) )
8 4 6 7 syl2an ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) ∈ ( Base ‘ 𝑅 ) )
9 eqid ( ∥r𝑅 ) = ( ∥r𝑅 )
10 5 9 2 dvdsrneg ( ( 𝑅 ∈ Ring ∧ ( 𝑁𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁𝑋 ) ( ∥r𝑅 ) ( 𝑁 ‘ ( 𝑁𝑋 ) ) )
11 8 10 syldan ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) ( ∥r𝑅 ) ( 𝑁 ‘ ( 𝑁𝑋 ) ) )
12 5 2 grpinvinv ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
13 4 6 12 syl2an ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
14 11 13 breqtrd ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) ( ∥r𝑅 ) 𝑋 )
15 simpr ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → 𝑋𝑈 )
16 eqid ( 1r𝑅 ) = ( 1r𝑅 )
17 eqid ( oppr𝑅 ) = ( oppr𝑅 )
18 eqid ( ∥r ‘ ( oppr𝑅 ) ) = ( ∥r ‘ ( oppr𝑅 ) )
19 1 16 9 17 18 isunit ( 𝑋𝑈 ↔ ( 𝑋 ( ∥r𝑅 ) ( 1r𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr𝑅 ) ) ( 1r𝑅 ) ) )
20 15 19 sylib ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑋 ( ∥r𝑅 ) ( 1r𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr𝑅 ) ) ( 1r𝑅 ) ) )
21 20 simpld ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → 𝑋 ( ∥r𝑅 ) ( 1r𝑅 ) )
22 5 9 dvdsrtr ( ( 𝑅 ∈ Ring ∧ ( 𝑁𝑋 ) ( ∥r𝑅 ) 𝑋𝑋 ( ∥r𝑅 ) ( 1r𝑅 ) ) → ( 𝑁𝑋 ) ( ∥r𝑅 ) ( 1r𝑅 ) )
23 3 14 21 22 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) ( ∥r𝑅 ) ( 1r𝑅 ) )
24 17 opprring ( 𝑅 ∈ Ring → ( oppr𝑅 ) ∈ Ring )
25 24 adantr ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( oppr𝑅 ) ∈ Ring )
26 17 5 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr𝑅 ) )
27 17 2 opprneg 𝑁 = ( invg ‘ ( oppr𝑅 ) )
28 26 18 27 dvdsrneg ( ( ( oppr𝑅 ) ∈ Ring ∧ ( 𝑁𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁𝑋 ) ( ∥r ‘ ( oppr𝑅 ) ) ( 𝑁 ‘ ( 𝑁𝑋 ) ) )
29 25 8 28 syl2anc ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) ( ∥r ‘ ( oppr𝑅 ) ) ( 𝑁 ‘ ( 𝑁𝑋 ) ) )
30 29 13 breqtrd ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) ( ∥r ‘ ( oppr𝑅 ) ) 𝑋 )
31 20 simprd ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → 𝑋 ( ∥r ‘ ( oppr𝑅 ) ) ( 1r𝑅 ) )
32 26 18 dvdsrtr ( ( ( oppr𝑅 ) ∈ Ring ∧ ( 𝑁𝑋 ) ( ∥r ‘ ( oppr𝑅 ) ) 𝑋𝑋 ( ∥r ‘ ( oppr𝑅 ) ) ( 1r𝑅 ) ) → ( 𝑁𝑋 ) ( ∥r ‘ ( oppr𝑅 ) ) ( 1r𝑅 ) )
33 25 30 31 32 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) ( ∥r ‘ ( oppr𝑅 ) ) ( 1r𝑅 ) )
34 1 16 9 17 18 isunit ( ( 𝑁𝑋 ) ∈ 𝑈 ↔ ( ( 𝑁𝑋 ) ( ∥r𝑅 ) ( 1r𝑅 ) ∧ ( 𝑁𝑋 ) ( ∥r ‘ ( oppr𝑅 ) ) ( 1r𝑅 ) ) )
35 23 33 34 sylanbrc ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) ∈ 𝑈 )