| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitnegcl.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 2 |
|
unitnegcl.2 |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 3 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
| 4 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
5 1
|
unitcl |
⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 7 |
5 2
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 8 |
4 6 7
|
syl2an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 9 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
| 10 |
5 9 2
|
dvdsrneg |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 11 |
8 10
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 12 |
5 2
|
grpinvinv |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 13 |
4 6 12
|
syl2an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 14 |
11 13
|
breqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) 𝑋 ) |
| 15 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
| 16 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 17 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 18 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
| 19 |
1 16 9 17 18
|
isunit |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 20 |
15 19
|
sylib |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 21 |
20
|
simpld |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 22 |
5 9
|
dvdsrtr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) 𝑋 ∧ 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 23 |
3 14 21 22
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 24 |
17
|
opprring |
⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 26 |
17 5
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 27 |
17 2
|
opprneg |
⊢ 𝑁 = ( invg ‘ ( oppr ‘ 𝑅 ) ) |
| 28 |
26 18 27
|
dvdsrneg |
⊢ ( ( ( oppr ‘ 𝑅 ) ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 29 |
25 8 28
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 30 |
29 13
|
breqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) |
| 31 |
20
|
simprd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 32 |
26 18
|
dvdsrtr |
⊢ ( ( ( oppr ‘ 𝑅 ) ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 33 |
25 30 31 32
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 34 |
1 16 9 17 18
|
isunit |
⊢ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝑈 ↔ ( ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ ( 𝑁 ‘ 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 35 |
23 33 34
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑈 ) |