Metamath Proof Explorer


Theorem dvdsrneg

Description: An element divides its negative. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 𝐵 = ( Base ‘ 𝑅 )
dvdsr.2 = ( ∥r𝑅 )
dvdsrneg.5 𝑁 = ( invg𝑅 )
Assertion dvdsrneg ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → 𝑋 ( 𝑁𝑋 ) )

Proof

Step Hyp Ref Expression
1 dvdsr.1 𝐵 = ( Base ‘ 𝑅 )
2 dvdsr.2 = ( ∥r𝑅 )
3 dvdsrneg.5 𝑁 = ( invg𝑅 )
4 id ( 𝑋𝐵𝑋𝐵 )
5 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
6 eqid ( 1r𝑅 ) = ( 1r𝑅 )
7 1 6 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ 𝐵 )
8 1 3 grpinvcl ( ( 𝑅 ∈ Grp ∧ ( 1r𝑅 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 1r𝑅 ) ) ∈ 𝐵 )
9 5 7 8 syl2anc ( 𝑅 ∈ Ring → ( 𝑁 ‘ ( 1r𝑅 ) ) ∈ 𝐵 )
10 eqid ( .r𝑅 ) = ( .r𝑅 )
11 1 2 10 dvdsrmul ( ( 𝑋𝐵 ∧ ( 𝑁 ‘ ( 1r𝑅 ) ) ∈ 𝐵 ) → 𝑋 ( ( 𝑁 ‘ ( 1r𝑅 ) ) ( .r𝑅 ) 𝑋 ) )
12 4 9 11 syl2anr ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → 𝑋 ( ( 𝑁 ‘ ( 1r𝑅 ) ) ( .r𝑅 ) 𝑋 ) )
13 simpl ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → 𝑅 ∈ Ring )
14 simpr ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → 𝑋𝐵 )
15 1 10 6 3 13 14 ringnegl ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( ( 𝑁 ‘ ( 1r𝑅 ) ) ( .r𝑅 ) 𝑋 ) = ( 𝑁𝑋 ) )
16 12 15 breqtrd ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → 𝑋 ( 𝑁𝑋 ) )