| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsr.1 |  |-  B = ( Base ` R ) | 
						
							| 2 |  | dvdsr.2 |  |-  .|| = ( ||r ` R ) | 
						
							| 3 |  | dvdsrneg.5 |  |-  N = ( invg ` R ) | 
						
							| 4 |  | id |  |-  ( X e. B -> X e. B ) | 
						
							| 5 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 6 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 7 | 1 6 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. B ) | 
						
							| 8 | 1 3 | grpinvcl |  |-  ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( 1r ` R ) ) e. B ) | 
						
							| 9 | 5 7 8 | syl2anc |  |-  ( R e. Ring -> ( N ` ( 1r ` R ) ) e. B ) | 
						
							| 10 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 11 | 1 2 10 | dvdsrmul |  |-  ( ( X e. B /\ ( N ` ( 1r ` R ) ) e. B ) -> X .|| ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) | 
						
							| 12 | 4 9 11 | syl2anr |  |-  ( ( R e. Ring /\ X e. B ) -> X .|| ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) | 
						
							| 13 |  | simpl |  |-  ( ( R e. Ring /\ X e. B ) -> R e. Ring ) | 
						
							| 14 |  | simpr |  |-  ( ( R e. Ring /\ X e. B ) -> X e. B ) | 
						
							| 15 | 1 10 6 3 13 14 | ringnegl |  |-  ( ( R e. Ring /\ X e. B ) -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) = ( N ` X ) ) | 
						
							| 16 | 12 15 | breqtrd |  |-  ( ( R e. Ring /\ X e. B ) -> X .|| ( N ` X ) ) |