Metamath Proof Explorer


Theorem aks6d1c4

Description: Claim 4 of Theorem 6.1 of the AKS inequality lemma. https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 12-May-2025)

Ref Expression
Hypotheses aks6d1c4.1 φ N
aks6d1c4.2 φ P
aks6d1c4.3 φ P N
aks6d1c4.4 φ R
aks6d1c4.5 φ N gcd R = 1
aks6d1c4.6 E = k 0 , l 0 P k N P l
aks6d1c4.7 L = ℤRHom /R
Assertion aks6d1c4 φ L E 0 × 0 ϕ R

Proof

Step Hyp Ref Expression
1 aks6d1c4.1 φ N
2 aks6d1c4.2 φ P
3 aks6d1c4.3 φ P N
4 aks6d1c4.4 φ R
5 aks6d1c4.5 φ N gcd R = 1
6 aks6d1c4.6 E = k 0 , l 0 P k N P l
7 aks6d1c4.7 L = ℤRHom /R
8 fvexd φ Unit /R V
9 4 nnnn0d φ R 0
10 eqid /R = /R
11 10 zncrng R 0 /R CRing
12 9 11 syl φ /R CRing
13 crngring /R CRing /R Ring
14 7 zrhrhm /R Ring L ring RingHom /R
15 zringbas = Base ring
16 eqid Base /R = Base /R
17 15 16 rhmf L ring RingHom /R L : Base /R
18 12 13 14 17 4syl φ L : Base /R
19 18 ffund φ Fun L
20 19 adantr φ a L E 0 × 0 Fun L
21 simpr φ a L E 0 × 0 a L E 0 × 0
22 fvelima Fun L a L E 0 × 0 b E 0 × 0 L b = a
23 20 21 22 syl2anc φ a L E 0 × 0 b E 0 × 0 L b = a
24 simpr φ b E 0 × 0 L b = a c E 0 × 0 L c = a L c = a
25 24 eqcomd φ b E 0 × 0 L b = a c E 0 × 0 L c = a a = L c
26 simpll φ b E 0 × 0 L b = a c E 0 × 0 φ
27 simpr φ b E 0 × 0 L b = a c E 0 × 0 c E 0 × 0
28 26 27 jca φ b E 0 × 0 L b = a c E 0 × 0 φ c E 0 × 0
29 ovexd φ m 0 × 0 P 1 st m N P 2 nd m V
30 vex k V
31 vex l V
32 30 31 op1std m = k l 1 st m = k
33 32 oveq2d m = k l P 1 st m = P k
34 30 31 op2ndd m = k l 2 nd m = l
35 34 oveq2d m = k l N P 2 nd m = N P l
36 33 35 oveq12d m = k l P 1 st m N P 2 nd m = P k N P l
37 36 mpompt m 0 × 0 P 1 st m N P 2 nd m = k 0 , l 0 P k N P l
38 37 eqcomi k 0 , l 0 P k N P l = m 0 × 0 P 1 st m N P 2 nd m
39 6 38 eqtri E = m 0 × 0 P 1 st m N P 2 nd m
40 29 39 fmptd φ E : 0 × 0 V
41 40 ffund φ Fun E
42 41 adantr φ c E 0 × 0 Fun E
43 simpr φ c E 0 × 0 c E 0 × 0
44 fvelima Fun E c E 0 × 0 d 0 × 0 E d = c
45 42 43 44 syl2anc φ c E 0 × 0 d 0 × 0 E d = c
46 simpr φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e = c E e = c
47 46 eqcomd φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e = c c = E e
48 47 oveq1d φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e = c c gcd R = E e gcd R
49 simplll φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 φ
50 simpr φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 e 0 × 0
51 49 50 jca φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 φ e 0 × 0
52 39 a1i φ e 0 × 0 E = m 0 × 0 P 1 st m N P 2 nd m
53 simpr φ e 0 × 0 m = e m = e
54 53 fveq2d φ e 0 × 0 m = e 1 st m = 1 st e
55 54 oveq2d φ e 0 × 0 m = e P 1 st m = P 1 st e
56 53 fveq2d φ e 0 × 0 m = e 2 nd m = 2 nd e
57 56 oveq2d φ e 0 × 0 m = e N P 2 nd m = N P 2 nd e
58 55 57 oveq12d φ e 0 × 0 m = e P 1 st m N P 2 nd m = P 1 st e N P 2 nd e
59 simpr φ e 0 × 0 e 0 × 0
60 ovexd φ e 0 × 0 P 1 st e N P 2 nd e V
61 52 58 59 60 fvmptd φ e 0 × 0 E e = P 1 st e N P 2 nd e
62 prmnn P P
63 2 62 syl φ P
64 63 nnzd φ P
65 64 adantr φ e 0 × 0 P
66 xp1st e 0 × 0 1 st e 0
67 66 adantl φ e 0 × 0 1 st e 0
68 65 67 zexpcld φ e 0 × 0 P 1 st e
69 63 nnne0d φ P 0
70 1 nnzd φ N
71 dvdsval2 P P 0 N P N N P
72 64 69 70 71 syl3anc φ P N N P
73 3 72 mpbid φ N P
74 73 adantr φ e 0 × 0 N P
75 xp2nd e 0 × 0 2 nd e 0
76 75 adantl φ e 0 × 0 2 nd e 0
77 74 76 zexpcld φ e 0 × 0 N P 2 nd e
78 68 77 zmulcld φ e 0 × 0 P 1 st e N P 2 nd e
79 61 78 eqeltrd φ e 0 × 0 E e
80 61 oveq1d φ e 0 × 0 E e gcd R = P 1 st e N P 2 nd e gcd R
81 4 nnzd φ R
82 81 adantr φ e 0 × 0 R
83 78 82 gcdcomd φ e 0 × 0 P 1 st e N P 2 nd e gcd R = R gcd P 1 st e N P 2 nd e
84 81 64 70 3jca φ R P N
85 70 81 jca φ N R
86 gcdcom N R N gcd R = R gcd N
87 85 86 syl φ N gcd R = R gcd N
88 eqeq1 N gcd R = R gcd N N gcd R = 1 R gcd N = 1
89 87 88 syl φ N gcd R = 1 R gcd N = 1
90 89 pm5.74i φ N gcd R = 1 φ R gcd N = 1
91 5 90 mpbi φ R gcd N = 1
92 91 3 jca φ R gcd N = 1 P N
93 rpdvds R P N R gcd N = 1 P N R gcd P = 1
94 84 92 93 syl2anc φ R gcd P = 1
95 94 adantr φ e 0 × 0 R gcd P = 1
96 95 adantr φ e 0 × 0 1 st e R gcd P = 1
97 4 ad2antrr φ e 0 × 0 1 st e R
98 63 ad2antrr φ e 0 × 0 1 st e P
99 simpr φ e 0 × 0 1 st e 1 st e
100 rprpwr R P 1 st e R gcd P = 1 R gcd P 1 st e = 1
101 97 98 99 100 syl3anc φ e 0 × 0 1 st e R gcd P = 1 R gcd P 1 st e = 1
102 96 101 mpd φ e 0 × 0 1 st e R gcd P 1 st e = 1
103 67 anim1i φ e 0 × 0 1 st e 0 1 st e 0 1 st e 0
104 elnnne0 1 st e 1 st e 0 1 st e 0
105 103 104 sylibr φ e 0 × 0 1 st e 0 1 st e
106 105 ex φ e 0 × 0 1 st e 0 1 st e
107 106 necon1bd φ e 0 × 0 ¬ 1 st e 1 st e = 0
108 107 imp φ e 0 × 0 ¬ 1 st e 1 st e = 0
109 108 oveq2d φ e 0 × 0 ¬ 1 st e P 1 st e = P 0
110 109 oveq2d φ e 0 × 0 ¬ 1 st e R gcd P 1 st e = R gcd P 0
111 65 zcnd φ e 0 × 0 P
112 111 adantr φ e 0 × 0 ¬ 1 st e P
113 112 exp0d φ e 0 × 0 ¬ 1 st e P 0 = 1
114 113 oveq2d φ e 0 × 0 ¬ 1 st e R gcd P 0 = R gcd 1
115 82 adantr φ e 0 × 0 ¬ 1 st e R
116 gcd1 R R gcd 1 = 1
117 115 116 syl φ e 0 × 0 ¬ 1 st e R gcd 1 = 1
118 114 117 eqtrd φ e 0 × 0 ¬ 1 st e R gcd P 0 = 1
119 110 118 eqtrd φ e 0 × 0 ¬ 1 st e R gcd P 1 st e = 1
120 102 119 pm2.61dan φ e 0 × 0 R gcd P 1 st e = 1
121 81 73 70 3jca φ R N P N
122 1 nnred φ N
123 122 recnd φ N
124 63 nnred φ P
125 124 recnd φ P
126 1 nngt0d φ 0 < N
127 126 gt0ne0d φ N 0
128 123 125 127 69 ddcand φ N N P = P
129 128 64 eqeltrd φ N N P
130 63 nngt0d φ 0 < P
131 122 124 126 130 divgt0d φ 0 < N P
132 131 gt0ne0d φ N P 0
133 dvdsval2 N P N P 0 N N P N N N P
134 73 132 70 133 syl3anc φ N P N N N P
135 129 134 mpbird φ N P N
136 91 135 jca φ R gcd N = 1 N P N
137 rpdvds R N P N R gcd N = 1 N P N R gcd N P = 1
138 121 136 137 syl2anc φ R gcd N P = 1
139 138 adantr φ e 0 × 0 R gcd N P = 1
140 139 adantr φ e 0 × 0 2 nd e R gcd N P = 1
141 4 ad2antrr φ e 0 × 0 2 nd e R
142 73 131 jca φ N P 0 < N P
143 elnnz N P N P 0 < N P
144 142 143 sylibr φ N P
145 144 adantr φ e 0 × 0 N P
146 145 adantr φ e 0 × 0 2 nd e N P
147 simpr φ e 0 × 0 2 nd e 2 nd e
148 rprpwr R N P 2 nd e R gcd N P = 1 R gcd N P 2 nd e = 1
149 141 146 147 148 syl3anc φ e 0 × 0 2 nd e R gcd N P = 1 R gcd N P 2 nd e = 1
150 140 149 mpd φ e 0 × 0 2 nd e R gcd N P 2 nd e = 1
151 76 anim1i φ e 0 × 0 2 nd e 0 2 nd e 0 2 nd e 0
152 elnnne0 2 nd e 2 nd e 0 2 nd e 0
153 151 152 sylibr φ e 0 × 0 2 nd e 0 2 nd e
154 153 ex φ e 0 × 0 2 nd e 0 2 nd e
155 154 necon1bd φ e 0 × 0 ¬ 2 nd e 2 nd e = 0
156 155 imp φ e 0 × 0 ¬ 2 nd e 2 nd e = 0
157 156 oveq2d φ e 0 × 0 ¬ 2 nd e N P 2 nd e = N P 0
158 157 oveq2d φ e 0 × 0 ¬ 2 nd e R gcd N P 2 nd e = R gcd N P 0
159 123 adantr φ e 0 × 0 N
160 159 adantr φ e 0 × 0 ¬ 2 nd e N
161 111 adantr φ e 0 × 0 ¬ 2 nd e P
162 69 ad2antrr φ e 0 × 0 ¬ 2 nd e P 0
163 160 161 162 divcld φ e 0 × 0 ¬ 2 nd e N P
164 163 exp0d φ e 0 × 0 ¬ 2 nd e N P 0 = 1
165 164 oveq2d φ e 0 × 0 ¬ 2 nd e R gcd N P 0 = R gcd 1
166 158 165 eqtrd φ e 0 × 0 ¬ 2 nd e R gcd N P 2 nd e = R gcd 1
167 82 adantr φ e 0 × 0 ¬ 2 nd e R
168 167 116 syl φ e 0 × 0 ¬ 2 nd e R gcd 1 = 1
169 166 168 eqtrd φ e 0 × 0 ¬ 2 nd e R gcd N P 2 nd e = 1
170 150 169 pm2.61dan φ e 0 × 0 R gcd N P 2 nd e = 1
171 120 170 jca φ e 0 × 0 R gcd P 1 st e = 1 R gcd N P 2 nd e = 1
172 rpmul R P 1 st e N P 2 nd e R gcd P 1 st e = 1 R gcd N P 2 nd e = 1 R gcd P 1 st e N P 2 nd e = 1
173 82 68 77 172 syl3anc φ e 0 × 0 R gcd P 1 st e = 1 R gcd N P 2 nd e = 1 R gcd P 1 st e N P 2 nd e = 1
174 171 173 mpd φ e 0 × 0 R gcd P 1 st e N P 2 nd e = 1
175 83 174 eqtrd φ e 0 × 0 P 1 st e N P 2 nd e gcd R = 1
176 80 175 eqtrd φ e 0 × 0 E e gcd R = 1
177 79 176 jca φ e 0 × 0 E e E e gcd R = 1
178 51 177 syl φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e E e gcd R = 1
179 178 adantr φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e = c E e E e gcd R = 1
180 179 simprd φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e = c E e gcd R = 1
181 48 180 eqtrd φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e = c c gcd R = 1
182 179 simpld φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e = c E e
183 47 182 eqeltrd φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e = c c
184 181 183 jca φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e = c c gcd R = 1 c
185 nfv e E d = c
186 nfv d E e = c
187 fveqeq2 d = e E d = c E e = c
188 185 186 187 cbvrexw d 0 × 0 E d = c e 0 × 0 E e = c
189 188 biimpi d 0 × 0 E d = c e 0 × 0 E e = c
190 189 adantl φ c E 0 × 0 d 0 × 0 E d = c e 0 × 0 E e = c
191 184 190 r19.29a φ c E 0 × 0 d 0 × 0 E d = c c gcd R = 1 c
192 191 ex φ c E 0 × 0 d 0 × 0 E d = c c gcd R = 1 c
193 45 192 mpd φ c E 0 × 0 c gcd R = 1 c
194 193 simpld φ c E 0 × 0 c gcd R = 1
195 9 adantr φ c E 0 × 0 R 0
196 193 simprd φ c E 0 × 0 c
197 eqid Unit /R = Unit /R
198 10 197 7 znunit R 0 c L c Unit /R c gcd R = 1
199 195 196 198 syl2anc φ c E 0 × 0 L c Unit /R c gcd R = 1
200 194 199 mpbird φ c E 0 × 0 L c Unit /R
201 28 200 syl φ b E 0 × 0 L b = a c E 0 × 0 L c Unit /R
202 201 adantr φ b E 0 × 0 L b = a c E 0 × 0 L c = a L c Unit /R
203 25 202 eqeltrd φ b E 0 × 0 L b = a c E 0 × 0 L c = a a Unit /R
204 nfv c L b = a
205 nfv b L c = a
206 fveqeq2 b = c L b = a L c = a
207 204 205 206 cbvrexw b E 0 × 0 L b = a c E 0 × 0 L c = a
208 207 biimpi b E 0 × 0 L b = a c E 0 × 0 L c = a
209 208 adantl φ b E 0 × 0 L b = a c E 0 × 0 L c = a
210 203 209 r19.29a φ b E 0 × 0 L b = a a Unit /R
211 210 ex φ b E 0 × 0 L b = a a Unit /R
212 211 adantr φ a L E 0 × 0 b E 0 × 0 L b = a a Unit /R
213 23 212 mpd φ a L E 0 × 0 a Unit /R
214 213 ex φ a L E 0 × 0 a Unit /R
215 214 ssrdv φ L E 0 × 0 Unit /R
216 hashss Unit /R V L E 0 × 0 Unit /R L E 0 × 0 Unit /R
217 8 215 216 syl2anc φ L E 0 × 0 Unit /R
218 10 197 znunithash R Unit /R = ϕ R
219 4 218 syl φ Unit /R = ϕ R
220 217 219 breqtrd φ L E 0 × 0 ϕ R