Metamath Proof Explorer


Theorem znunit

Description: The units of Z/nZ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses znchr.y Y=/N
znunit.u U=UnitY
znunit.l L=ℤRHomY
Assertion znunit N0ALAUAgcdN=1

Proof

Step Hyp Ref Expression
1 znchr.y Y=/N
2 znunit.u U=UnitY
3 znunit.l L=ℤRHomY
4 1 zncrng N0YCRing
5 4 adantr N0AYCRing
6 eqid 1Y=1Y
7 eqid rY=rY
8 2 6 7 crngunit YCRingLAULArY1Y
9 5 8 syl N0ALAULArY1Y
10 eqid BaseY=BaseY
11 1 10 3 znzrhfo N0L:ontoBaseY
12 11 adantr N0AL:ontoBaseY
13 fof L:ontoBaseYL:BaseY
14 12 13 syl N0AL:BaseY
15 ffvelcdm L:BaseYALABaseY
16 14 15 sylancom N0ALABaseY
17 eqid Y=Y
18 10 7 17 dvdsr2 LABaseYLArY1YxBaseYxYLA=1Y
19 16 18 syl N0ALArY1YxBaseYxYLA=1Y
20 forn L:ontoBaseYranL=BaseY
21 12 20 syl N0AranL=BaseY
22 21 rexeqdv N0AxranLxYLA=1YxBaseYxYLA=1Y
23 ffn L:BaseYLFn
24 oveq1 x=LnxYLA=LnYLA
25 24 eqeq1d x=LnxYLA=1YLnYLA=1Y
26 25 rexrn LFnxranLxYLA=1YnLnYLA=1Y
27 14 23 26 3syl N0AxranLxYLA=1YnLnYLA=1Y
28 22 27 bitr3d N0AxBaseYxYLA=1YnLnYLA=1Y
29 crngring YCRingYRing
30 5 29 syl N0AYRing
31 3 zrhrhm YRingLringRingHomY
32 30 31 syl N0ALringRingHomY
33 32 adantr N0AnLringRingHomY
34 simpr N0Ann
35 simplr N0AnA
36 zringbas =Basering
37 zringmulr ×=ring
38 36 37 17 rhmmul LringRingHomYnALnA=LnYLA
39 33 34 35 38 syl3anc N0AnLnA=LnYLA
40 30 adantr N0AnYRing
41 3 6 zrh1 YRingL1=1Y
42 40 41 syl N0AnL1=1Y
43 39 42 eqeq12d N0AnLnA=L1LnYLA=1Y
44 simpll N0AnN0
45 34 35 zmulcld N0AnnA
46 1zzd N0An1
47 1 3 zndvds N0nA1LnA=L1NnA1
48 44 45 46 47 syl3anc N0AnLnA=L1NnA1
49 43 48 bitr3d N0AnLnYLA=1YNnA1
50 49 rexbidva N0AnLnYLA=1YnNnA1
51 simplr N0AnNnA1A
52 nn0z N0N
53 52 ad2antrr N0AnNnA1N
54 gcddvds ANAgcdNAAgcdNN
55 51 53 54 syl2anc N0AnNnA1AgcdNAAgcdNN
56 55 simpld N0AnNnA1AgcdNA
57 51 53 gcdcld N0AnNnA1AgcdN0
58 57 nn0zd N0AnNnA1AgcdN
59 34 adantrr N0AnNnA1n
60 dvdsmultr2 AgcdNnAAgcdNAAgcdNnA
61 58 59 51 60 syl3anc N0AnNnA1AgcdNAAgcdNnA
62 56 61 mpd N0AnNnA1AgcdNnA
63 45 adantrr N0AnNnA1nA
64 1zzd N0AnNnA11
65 peano2zm nAnA1
66 63 65 syl N0AnNnA1nA1
67 55 simprd N0AnNnA1AgcdNN
68 simprr N0AnNnA1NnA1
69 58 53 66 67 68 dvdstrd N0AnNnA1AgcdNnA1
70 dvdssub2 AgcdNnA1AgcdNnA1AgcdNnAAgcdN1
71 58 63 64 69 70 syl31anc N0AnNnA1AgcdNnAAgcdN1
72 62 71 mpbid N0AnNnA1AgcdN1
73 dvds1 AgcdN0AgcdN1AgcdN=1
74 57 73 syl N0AnNnA1AgcdN1AgcdN=1
75 72 74 mpbid N0AnNnA1AgcdN=1
76 75 rexlimdvaa N0AnNnA1AgcdN=1
77 simpr N0AA
78 52 adantr N0AN
79 bezout ANnmAgcdN=An+Nm
80 77 78 79 syl2anc N0AnmAgcdN=An+Nm
81 eqeq1 AgcdN=1AgcdN=An+Nm1=An+Nm
82 81 2rexbidv AgcdN=1nmAgcdN=An+Nmnm1=An+Nm
83 80 82 syl5ibcom N0AAgcdN=1nm1=An+Nm
84 52 ad3antrrr N0AnmN
85 dvdsmul1 NmNNm
86 84 85 sylancom N0AnmNNm
87 zmulcl NmNm
88 84 87 sylancom N0AnmNm
89 dvdsnegb NNmNNmNNm
90 84 88 89 syl2anc N0AnmNNmNNm
91 86 90 mpbid N0AnmNNm
92 35 adantr N0AnmA
93 92 zcnd N0AnmA
94 zcn nn
95 94 ad2antlr N0Anmn
96 93 95 mulcomd N0AnmAn=nA
97 96 oveq1d N0AnmAn+Nm=nA+Nm
98 95 93 mulcld N0AnmnA
99 88 zcnd N0AnmNm
100 98 99 subnegd N0AnmnANm=nA+Nm
101 97 100 eqtr4d N0AnmAn+Nm=nANm
102 101 oveq2d N0AnmnAAn+Nm=nAnANm
103 99 negcld N0AnmNm
104 98 103 nncand N0AnmnAnANm=Nm
105 102 104 eqtrd N0AnmnAAn+Nm=Nm
106 91 105 breqtrrd N0AnmNnAAn+Nm
107 oveq2 1=An+NmnA1=nAAn+Nm
108 107 breq2d 1=An+NmNnA1NnAAn+Nm
109 106 108 syl5ibrcom N0Anm1=An+NmNnA1
110 109 rexlimdva N0Anm1=An+NmNnA1
111 110 reximdva N0Anm1=An+NmnNnA1
112 83 111 syld N0AAgcdN=1nNnA1
113 76 112 impbid N0AnNnA1AgcdN=1
114 28 50 113 3bitrd N0AxBaseYxYLA=1YAgcdN=1
115 9 19 114 3bitrd N0ALAUAgcdN=1