Metamath Proof Explorer
Description: The divides relation is transitive, a deduction version of dvdstr .
(Contributed by metakunt, 12-May-2024)
|
|
Ref |
Expression |
|
Hypotheses |
dvdstrd.1 |
|
|
|
dvdstrd.2 |
|
|
|
dvdstrd.3 |
|
|
|
dvdstrd.4 |
|
|
|
dvdstrd.5 |
|
|
Assertion |
dvdstrd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dvdstrd.1 |
|
2 |
|
dvdstrd.2 |
|
3 |
|
dvdstrd.3 |
|
4 |
|
dvdstrd.4 |
|
5 |
|
dvdstrd.5 |
|
6 |
|
dvdstr |
|
7 |
1 2 3 6
|
syl3anc |
|
8 |
4 5 7
|
mp2and |
|