Metamath Proof Explorer


Theorem dvdstrd

Description: The divides relation is transitive, a deduction version of dvdstr . (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses dvdstrd.1 ( 𝜑𝐾 ∈ ℤ )
dvdstrd.2 ( 𝜑𝑀 ∈ ℤ )
dvdstrd.3 ( 𝜑𝑁 ∈ ℤ )
dvdstrd.4 ( 𝜑𝐾𝑀 )
dvdstrd.5 ( 𝜑𝑀𝑁 )
Assertion dvdstrd ( 𝜑𝐾𝑁 )

Proof

Step Hyp Ref Expression
1 dvdstrd.1 ( 𝜑𝐾 ∈ ℤ )
2 dvdstrd.2 ( 𝜑𝑀 ∈ ℤ )
3 dvdstrd.3 ( 𝜑𝑁 ∈ ℤ )
4 dvdstrd.4 ( 𝜑𝐾𝑀 )
5 dvdstrd.5 ( 𝜑𝑀𝑁 )
6 dvdstr ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾𝑀𝑀𝑁 ) → 𝐾𝑁 ) )
7 1 2 3 6 syl3anc ( 𝜑 → ( ( 𝐾𝑀𝑀𝑁 ) → 𝐾𝑁 ) )
8 4 5 7 mp2and ( 𝜑𝐾𝑁 )