Description: The divides relation is transitive. Theorem 1.1(b) in ApostolNT p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dvdstr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa | |
|
2 | 3simpc | |
|
3 | 3simpb | |
|
4 | zmulcl | |
|
5 | 4 | adantl | |
6 | oveq2 | |
|
7 | 6 | adantr | |
8 | eqeq2 | |
|
9 | 8 | adantl | |
10 | 7 9 | mpbid | |
11 | zcn | |
|
12 | zcn | |
|
13 | zcn | |
|
14 | mulass | |
|
15 | mul12 | |
|
16 | 14 15 | eqtrd | |
17 | 11 12 13 16 | syl3an | |
18 | 17 | 3comr | |
19 | 18 | 3expb | |
20 | 19 | 3ad2antl1 | |
21 | 20 | eqeq1d | |
22 | 10 21 | imbitrrid | |
23 | 1 2 3 5 22 | dvds2lem | |