Metamath Proof Explorer


Theorem dvdstr

Description: The divides relation is transitive. Theorem 1.1(b) in ApostolNT p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdstr KMNKMMNKN

Proof

Step Hyp Ref Expression
1 3simpa KMNKM
2 3simpc KMNMN
3 3simpb KMNKN
4 zmulcl xyxy
5 4 adantl KMNxyxy
6 oveq2 xK=MyxK=y M
7 6 adantr xK=My M=NyxK=y M
8 eqeq2 y M=NyxK=y MyxK=N
9 8 adantl xK=My M=NyxK=y MyxK=N
10 7 9 mpbid xK=My M=NyxK=N
11 zcn xx
12 zcn yy
13 zcn KK
14 mulass xyKxyK=xyK
15 mul12 xyKxyK=yxK
16 14 15 eqtrd xyKxyK=yxK
17 11 12 13 16 syl3an xyKxyK=yxK
18 17 3comr KxyxyK=yxK
19 18 3expb KxyxyK=yxK
20 19 3ad2antl1 KMNxyxyK=yxK
21 20 eqeq1d KMNxyxyK=NyxK=N
22 10 21 imbitrrid KMNxyxK=My M=NxyK=N
23 1 2 3 5 22 dvds2lem KMNKMMNKN