Metamath Proof Explorer


Theorem dvdsnegb

Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdsnegb MNMNM- N

Proof

Step Hyp Ref Expression
1 id MNMN
2 znegcl NN
3 2 anim2i MNMN
4 znegcl xx
5 4 adantl MNxx
6 zcn xx
7 zcn MM
8 mulneg1 xMx M=x M
9 negeq x M=Nx M=N
10 9 eqeq2d x M=Nx M=x Mx M=N
11 8 10 syl5ibcom xMx M=Nx M=N
12 6 7 11 syl2anr Mxx M=Nx M=N
13 12 adantlr MNxx M=Nx M=N
14 1 3 5 13 dvds1lem MNMNM- N
15 zcn NN
16 negeq x M=Nx M=- N
17 negneg N- N=N
18 16 17 sylan9eqr Nx M=Nx M=N
19 8 18 sylan9eq xMNx M=Nx M=N
20 19 expr xMNx M=Nx M=N
21 20 3impa xMNx M=Nx M=N
22 6 7 15 21 syl3an xMNx M=Nx M=N
23 22 3coml MNxx M=Nx M=N
24 23 3expa MNxx M=Nx M=N
25 3 1 5 24 dvds1lem MNM- NMN
26 14 25 impbid MNMNM- N