Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dvdsnegb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | znegcl | |
|
3 | 2 | anim2i | |
4 | znegcl | |
|
5 | 4 | adantl | |
6 | zcn | |
|
7 | zcn | |
|
8 | mulneg1 | |
|
9 | negeq | |
|
10 | 9 | eqeq2d | |
11 | 8 10 | syl5ibcom | |
12 | 6 7 11 | syl2anr | |
13 | 12 | adantlr | |
14 | 1 3 5 13 | dvds1lem | |
15 | zcn | |
|
16 | negeq | |
|
17 | negneg | |
|
18 | 16 17 | sylan9eqr | |
19 | 8 18 | sylan9eq | |
20 | 19 | expr | |
21 | 20 | 3impa | |
22 | 6 7 15 21 | syl3an | |
23 | 22 | 3coml | |
24 | 23 | 3expa | |
25 | 3 1 5 24 | dvds1lem | |
26 | 14 25 | impbid | |