Step |
Hyp |
Ref |
Expression |
1 |
|
hashf1dmrn |
|- ( ( F e. V /\ F : A -1-1-> B ) -> ( # ` A ) = ( # ` ran F ) ) |
2 |
1
|
3adant2 |
|- ( ( F e. V /\ B e. W /\ F : A -1-1-> B ) -> ( # ` A ) = ( # ` ran F ) ) |
3 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
4 |
|
frn |
|- ( F : A --> B -> ran F C_ B ) |
5 |
|
hashss |
|- ( ( B e. W /\ ran F C_ B ) -> ( # ` ran F ) <_ ( # ` B ) ) |
6 |
4 5
|
sylan2 |
|- ( ( B e. W /\ F : A --> B ) -> ( # ` ran F ) <_ ( # ` B ) ) |
7 |
3 6
|
sylan2 |
|- ( ( B e. W /\ F : A -1-1-> B ) -> ( # ` ran F ) <_ ( # ` B ) ) |
8 |
7
|
3adant1 |
|- ( ( F e. V /\ B e. W /\ F : A -1-1-> B ) -> ( # ` ran F ) <_ ( # ` B ) ) |
9 |
2 8
|
eqbrtrd |
|- ( ( F e. V /\ B e. W /\ F : A -1-1-> B ) -> ( # ` A ) <_ ( # ` B ) ) |