| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pfxcl |
|- ( W e. Word V -> ( W prefix L ) e. Word V ) |
| 2 |
|
revcl |
|- ( ( W prefix L ) e. Word V -> ( reverse ` ( W prefix L ) ) e. Word V ) |
| 3 |
|
wrdfn |
|- ( ( reverse ` ( W prefix L ) ) e. Word V -> ( reverse ` ( W prefix L ) ) Fn ( 0 ..^ ( # ` ( reverse ` ( W prefix L ) ) ) ) ) |
| 4 |
1 2 3
|
3syl |
|- ( W e. Word V -> ( reverse ` ( W prefix L ) ) Fn ( 0 ..^ ( # ` ( reverse ` ( W prefix L ) ) ) ) ) |
| 5 |
4
|
adantr |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( reverse ` ( W prefix L ) ) Fn ( 0 ..^ ( # ` ( reverse ` ( W prefix L ) ) ) ) ) |
| 6 |
|
revlen |
|- ( ( W prefix L ) e. Word V -> ( # ` ( reverse ` ( W prefix L ) ) ) = ( # ` ( W prefix L ) ) ) |
| 7 |
1 6
|
syl |
|- ( W e. Word V -> ( # ` ( reverse ` ( W prefix L ) ) ) = ( # ` ( W prefix L ) ) ) |
| 8 |
7
|
adantr |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( reverse ` ( W prefix L ) ) ) = ( # ` ( W prefix L ) ) ) |
| 9 |
|
pfxlen |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix L ) ) = L ) |
| 10 |
8 9
|
eqtrd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( reverse ` ( W prefix L ) ) ) = L ) |
| 11 |
10
|
oveq2d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( 0 ..^ ( # ` ( reverse ` ( W prefix L ) ) ) ) = ( 0 ..^ L ) ) |
| 12 |
11
|
fneq2d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( reverse ` ( W prefix L ) ) Fn ( 0 ..^ ( # ` ( reverse ` ( W prefix L ) ) ) ) <-> ( reverse ` ( W prefix L ) ) Fn ( 0 ..^ L ) ) ) |
| 13 |
5 12
|
mpbid |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( reverse ` ( W prefix L ) ) Fn ( 0 ..^ L ) ) |
| 14 |
|
revcl |
|- ( W e. Word V -> ( reverse ` W ) e. Word V ) |
| 15 |
|
swrdcl |
|- ( ( reverse ` W ) e. Word V -> ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) e. Word V ) |
| 16 |
|
wrdfn |
|- ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) e. Word V -> ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) Fn ( 0 ..^ ( # ` ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ) ) ) |
| 17 |
14 15 16
|
3syl |
|- ( W e. Word V -> ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) Fn ( 0 ..^ ( # ` ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ) ) ) |
| 18 |
17
|
adantr |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) Fn ( 0 ..^ ( # ` ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ) ) ) |
| 19 |
|
fznn0sub2 |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) ) |
| 20 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
| 21 |
|
nn0fz0 |
|- ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
| 22 |
20 21
|
sylib |
|- ( W e. Word V -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
| 23 |
|
revlen |
|- ( W e. Word V -> ( # ` ( reverse ` W ) ) = ( # ` W ) ) |
| 24 |
23
|
oveq2d |
|- ( W e. Word V -> ( 0 ... ( # ` ( reverse ` W ) ) ) = ( 0 ... ( # ` W ) ) ) |
| 25 |
22 24
|
eleqtrrd |
|- ( W e. Word V -> ( # ` W ) e. ( 0 ... ( # ` ( reverse ` W ) ) ) ) |
| 26 |
|
swrdlen |
|- ( ( ( reverse ` W ) e. Word V /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` ( reverse ` W ) ) ) ) -> ( # ` ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ) = ( ( # ` W ) - ( ( # ` W ) - L ) ) ) |
| 27 |
14 19 25 26
|
syl3an |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ W e. Word V ) -> ( # ` ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ) = ( ( # ` W ) - ( ( # ` W ) - L ) ) ) |
| 28 |
27
|
3anidm13 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ) = ( ( # ` W ) - ( ( # ` W ) - L ) ) ) |
| 29 |
20
|
nn0cnd |
|- ( W e. Word V -> ( # ` W ) e. CC ) |
| 30 |
29
|
adantr |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` W ) e. CC ) |
| 31 |
|
elfzelz |
|- ( L e. ( 0 ... ( # ` W ) ) -> L e. ZZ ) |
| 32 |
31
|
zcnd |
|- ( L e. ( 0 ... ( # ` W ) ) -> L e. CC ) |
| 33 |
32
|
adantl |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> L e. CC ) |
| 34 |
30 33
|
nncand |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( # ` W ) - ( ( # ` W ) - L ) ) = L ) |
| 35 |
28 34
|
eqtrd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ) = L ) |
| 36 |
35
|
oveq2d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( 0 ..^ ( # ` ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ) ) = ( 0 ..^ L ) ) |
| 37 |
36
|
fneq2d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) Fn ( 0 ..^ ( # ` ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ) ) <-> ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) Fn ( 0 ..^ L ) ) ) |
| 38 |
18 37
|
mpbid |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) Fn ( 0 ..^ L ) ) |
| 39 |
|
simp1 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> W e. Word V ) |
| 40 |
|
simp3 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> x e. ( 0 ..^ L ) ) |
| 41 |
9
|
oveq2d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( 0 ..^ ( # ` ( W prefix L ) ) ) = ( 0 ..^ L ) ) |
| 42 |
41
|
3adant3 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( 0 ..^ ( # ` ( W prefix L ) ) ) = ( 0 ..^ L ) ) |
| 43 |
40 42
|
eleqtrrd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> x e. ( 0 ..^ ( # ` ( W prefix L ) ) ) ) |
| 44 |
|
revfv |
|- ( ( ( W prefix L ) e. Word V /\ x e. ( 0 ..^ ( # ` ( W prefix L ) ) ) ) -> ( ( reverse ` ( W prefix L ) ) ` x ) = ( ( W prefix L ) ` ( ( ( # ` ( W prefix L ) ) - 1 ) - x ) ) ) |
| 45 |
1 44
|
sylan |
|- ( ( W e. Word V /\ x e. ( 0 ..^ ( # ` ( W prefix L ) ) ) ) -> ( ( reverse ` ( W prefix L ) ) ` x ) = ( ( W prefix L ) ` ( ( ( # ` ( W prefix L ) ) - 1 ) - x ) ) ) |
| 46 |
39 43 45
|
syl2anc |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( reverse ` ( W prefix L ) ) ` x ) = ( ( W prefix L ) ` ( ( ( # ` ( W prefix L ) ) - 1 ) - x ) ) ) |
| 47 |
9
|
oveq1d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( # ` ( W prefix L ) ) - 1 ) = ( L - 1 ) ) |
| 48 |
47
|
oveq1d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( ( # ` ( W prefix L ) ) - 1 ) - x ) = ( ( L - 1 ) - x ) ) |
| 49 |
48
|
fveq2d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( W prefix L ) ` ( ( ( # ` ( W prefix L ) ) - 1 ) - x ) ) = ( ( W prefix L ) ` ( ( L - 1 ) - x ) ) ) |
| 50 |
49
|
3adant3 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( W prefix L ) ` ( ( ( # ` ( W prefix L ) ) - 1 ) - x ) ) = ( ( W prefix L ) ` ( ( L - 1 ) - x ) ) ) |
| 51 |
32
|
3ad2ant2 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> L e. CC ) |
| 52 |
|
elfzoelz |
|- ( x e. ( 0 ..^ L ) -> x e. ZZ ) |
| 53 |
52
|
zcnd |
|- ( x e. ( 0 ..^ L ) -> x e. CC ) |
| 54 |
53
|
3ad2ant3 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> x e. CC ) |
| 55 |
|
1cnd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> 1 e. CC ) |
| 56 |
51 54 55
|
sub32d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( L - x ) - 1 ) = ( ( L - 1 ) - x ) ) |
| 57 |
|
ubmelm1fzo |
|- ( x e. ( 0 ..^ L ) -> ( ( L - x ) - 1 ) e. ( 0 ..^ L ) ) |
| 58 |
57
|
3ad2ant3 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( L - x ) - 1 ) e. ( 0 ..^ L ) ) |
| 59 |
56 58
|
eqeltrrd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( L - 1 ) - x ) e. ( 0 ..^ L ) ) |
| 60 |
|
pfxfv |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ ( ( L - 1 ) - x ) e. ( 0 ..^ L ) ) -> ( ( W prefix L ) ` ( ( L - 1 ) - x ) ) = ( W ` ( ( L - 1 ) - x ) ) ) |
| 61 |
59 60
|
syld3an3 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( W prefix L ) ` ( ( L - 1 ) - x ) ) = ( W ` ( ( L - 1 ) - x ) ) ) |
| 62 |
46 50 61
|
3eqtrd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( reverse ` ( W prefix L ) ) ` x ) = ( W ` ( ( L - 1 ) - x ) ) ) |
| 63 |
34
|
oveq2d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( 0 ..^ ( ( # ` W ) - ( ( # ` W ) - L ) ) ) = ( 0 ..^ L ) ) |
| 64 |
63
|
eleq2d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( x e. ( 0 ..^ ( ( # ` W ) - ( ( # ` W ) - L ) ) ) <-> x e. ( 0 ..^ L ) ) ) |
| 65 |
64
|
biimp3ar |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> x e. ( 0 ..^ ( ( # ` W ) - ( ( # ` W ) - L ) ) ) ) |
| 66 |
|
id |
|- ( ( W e. Word V /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ W e. Word V ) -> ( W e. Word V /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ W e. Word V ) ) |
| 67 |
66
|
3anidm13 |
|- ( ( W e. Word V /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) ) -> ( W e. Word V /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ W e. Word V ) ) |
| 68 |
|
swrdfv |
|- ( ( ( ( reverse ` W ) e. Word V /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` ( reverse ` W ) ) ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - ( ( # ` W ) - L ) ) ) ) -> ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ` x ) = ( ( reverse ` W ) ` ( x + ( ( # ` W ) - L ) ) ) ) |
| 69 |
14 68
|
syl3anl1 |
|- ( ( ( W e. Word V /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` ( reverse ` W ) ) ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - ( ( # ` W ) - L ) ) ) ) -> ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ` x ) = ( ( reverse ` W ) ` ( x + ( ( # ` W ) - L ) ) ) ) |
| 70 |
25 69
|
syl3anl3 |
|- ( ( ( W e. Word V /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ W e. Word V ) /\ x e. ( 0 ..^ ( ( # ` W ) - ( ( # ` W ) - L ) ) ) ) -> ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ` x ) = ( ( reverse ` W ) ` ( x + ( ( # ` W ) - L ) ) ) ) |
| 71 |
67 70
|
stoic3 |
|- ( ( W e. Word V /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - ( ( # ` W ) - L ) ) ) ) -> ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ` x ) = ( ( reverse ` W ) ` ( x + ( ( # ` W ) - L ) ) ) ) |
| 72 |
19 71
|
syl3an2 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ ( ( # ` W ) - ( ( # ` W ) - L ) ) ) ) -> ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ` x ) = ( ( reverse ` W ) ` ( x + ( ( # ` W ) - L ) ) ) ) |
| 73 |
65 72
|
syld3an3 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ` x ) = ( ( reverse ` W ) ` ( x + ( ( # ` W ) - L ) ) ) ) |
| 74 |
|
0z |
|- 0 e. ZZ |
| 75 |
|
elfzuz3 |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( # ` W ) e. ( ZZ>= ` L ) ) |
| 76 |
32
|
addlidd |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( 0 + L ) = L ) |
| 77 |
76
|
fveq2d |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( ZZ>= ` ( 0 + L ) ) = ( ZZ>= ` L ) ) |
| 78 |
75 77
|
eleqtrrd |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( # ` W ) e. ( ZZ>= ` ( 0 + L ) ) ) |
| 79 |
|
eluzsub |
|- ( ( 0 e. ZZ /\ L e. ZZ /\ ( # ` W ) e. ( ZZ>= ` ( 0 + L ) ) ) -> ( ( # ` W ) - L ) e. ( ZZ>= ` 0 ) ) |
| 80 |
74 31 78 79
|
mp3an2i |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( ( # ` W ) - L ) e. ( ZZ>= ` 0 ) ) |
| 81 |
|
fzoss1 |
|- ( ( ( # ` W ) - L ) e. ( ZZ>= ` 0 ) -> ( ( ( # ` W ) - L ) ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) ) |
| 82 |
80 81
|
syl |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( ( ( # ` W ) - L ) ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) ) |
| 83 |
82
|
3ad2ant2 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( # ` W ) - L ) ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) ) |
| 84 |
20
|
nn0zd |
|- ( W e. Word V -> ( # ` W ) e. ZZ ) |
| 85 |
84
|
3ad2ant1 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( # ` W ) e. ZZ ) |
| 86 |
31
|
3ad2ant2 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> L e. ZZ ) |
| 87 |
85 86
|
zsubcld |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( # ` W ) - L ) e. ZZ ) |
| 88 |
|
fzo0addel |
|- ( ( x e. ( 0 ..^ L ) /\ ( ( # ` W ) - L ) e. ZZ ) -> ( x + ( ( # ` W ) - L ) ) e. ( ( ( # ` W ) - L ) ..^ ( L + ( ( # ` W ) - L ) ) ) ) |
| 89 |
40 87 88
|
syl2anc |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( x + ( ( # ` W ) - L ) ) e. ( ( ( # ` W ) - L ) ..^ ( L + ( ( # ` W ) - L ) ) ) ) |
| 90 |
30
|
3adant3 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( # ` W ) e. CC ) |
| 91 |
51 90
|
pncan3d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( L + ( ( # ` W ) - L ) ) = ( # ` W ) ) |
| 92 |
91
|
oveq2d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( # ` W ) - L ) ..^ ( L + ( ( # ` W ) - L ) ) ) = ( ( ( # ` W ) - L ) ..^ ( # ` W ) ) ) |
| 93 |
89 92
|
eleqtrd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( x + ( ( # ` W ) - L ) ) e. ( ( ( # ` W ) - L ) ..^ ( # ` W ) ) ) |
| 94 |
83 93
|
sseldd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( x + ( ( # ` W ) - L ) ) e. ( 0 ..^ ( # ` W ) ) ) |
| 95 |
|
revfv |
|- ( ( W e. Word V /\ ( x + ( ( # ` W ) - L ) ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` ( x + ( ( # ` W ) - L ) ) ) = ( W ` ( ( ( # ` W ) - 1 ) - ( x + ( ( # ` W ) - L ) ) ) ) ) |
| 96 |
39 94 95
|
syl2anc |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( reverse ` W ) ` ( x + ( ( # ` W ) - L ) ) ) = ( W ` ( ( ( # ` W ) - 1 ) - ( x + ( ( # ` W ) - L ) ) ) ) ) |
| 97 |
90 55
|
subcld |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( # ` W ) - 1 ) e. CC ) |
| 98 |
87
|
zcnd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( # ` W ) - L ) e. CC ) |
| 99 |
97 54 98
|
sub32d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( ( # ` W ) - 1 ) - x ) - ( ( # ` W ) - L ) ) = ( ( ( ( # ` W ) - 1 ) - ( ( # ` W ) - L ) ) - x ) ) |
| 100 |
97 54 98
|
subsub4d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( ( # ` W ) - 1 ) - x ) - ( ( # ` W ) - L ) ) = ( ( ( # ` W ) - 1 ) - ( x + ( ( # ` W ) - L ) ) ) ) |
| 101 |
90 55 98
|
sub32d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( # ` W ) - 1 ) - ( ( # ` W ) - L ) ) = ( ( ( # ` W ) - ( ( # ` W ) - L ) ) - 1 ) ) |
| 102 |
101
|
oveq1d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( ( # ` W ) - 1 ) - ( ( # ` W ) - L ) ) - x ) = ( ( ( ( # ` W ) - ( ( # ` W ) - L ) ) - 1 ) - x ) ) |
| 103 |
99 100 102
|
3eqtr3d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( # ` W ) - 1 ) - ( x + ( ( # ` W ) - L ) ) ) = ( ( ( ( # ` W ) - ( ( # ` W ) - L ) ) - 1 ) - x ) ) |
| 104 |
34
|
3adant3 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( # ` W ) - ( ( # ` W ) - L ) ) = L ) |
| 105 |
104
|
oveq1d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( # ` W ) - ( ( # ` W ) - L ) ) - 1 ) = ( L - 1 ) ) |
| 106 |
105
|
oveq1d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( ( # ` W ) - ( ( # ` W ) - L ) ) - 1 ) - x ) = ( ( L - 1 ) - x ) ) |
| 107 |
103 106
|
eqtrd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( # ` W ) - 1 ) - ( x + ( ( # ` W ) - L ) ) ) = ( ( L - 1 ) - x ) ) |
| 108 |
107
|
fveq2d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( W ` ( ( ( # ` W ) - 1 ) - ( x + ( ( # ` W ) - L ) ) ) ) = ( W ` ( ( L - 1 ) - x ) ) ) |
| 109 |
73 96 108
|
3eqtrd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ` x ) = ( W ` ( ( L - 1 ) - x ) ) ) |
| 110 |
62 109
|
eqtr4d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( reverse ` ( W prefix L ) ) ` x ) = ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ` x ) ) |
| 111 |
110
|
3expa |
|- ( ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) /\ x e. ( 0 ..^ L ) ) -> ( ( reverse ` ( W prefix L ) ) ` x ) = ( ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ` x ) ) |
| 112 |
13 38 111
|
eqfnfvd |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( reverse ` ( W prefix L ) ) = ( ( reverse ` W ) substr <. ( ( # ` W ) - L ) , ( # ` W ) >. ) ) |