Step |
Hyp |
Ref |
Expression |
1 |
|
hausflf.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
n0 |
⊢ ( ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) |
3 |
2
|
biimpi |
⊢ ( ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≠ ∅ → ∃ 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) |
4 |
1
|
hausflf |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) |
5 |
|
euen1b |
⊢ ( ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≈ 1o ↔ ∃! 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) |
6 |
|
df-eu |
⊢ ( ∃! 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( ∃ 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) ) |
7 |
5 6
|
sylbbr |
⊢ ( ( ∃ 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≈ 1o ) |
8 |
3 4 7
|
syl2anr |
⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≠ ∅ ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≈ 1o ) |