Description: A more general form of hbn . (Contributed by Scott Fenton, 13-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hbg.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜓 ) | |
| Assertion | hbng | ⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜑 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbg.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜓 ) | |
| 2 | hbntg | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜓 ) → ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜑 ) ) | |
| 3 | 2 1 | mpg | ⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜑 ) |