Description: A more general form of hbn . (Contributed by Scott Fenton, 13-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hbg.1 | |- ( ph -> A. x ps ) | |
| Assertion | hbng | |- ( -. ps -> A. x -. ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbg.1 | |- ( ph -> A. x ps ) | |
| 2 | hbntg | |- ( A. x ( ph -> A. x ps ) -> ( -. ps -> A. x -. ph ) ) | |
| 3 | 2 1 | mpg | |- ( -. ps -> A. x -. ph ) |