Metamath Proof Explorer


Theorem hess

Description: Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020)

Ref Expression
Assertion hess ( 𝑆𝑅 → ( 𝑅 hereditary 𝐴𝑆 hereditary 𝐴 ) )

Proof

Step Hyp Ref Expression
1 imass1 ( 𝑆𝑅 → ( 𝑆𝐴 ) ⊆ ( 𝑅𝐴 ) )
2 sstr2 ( ( 𝑆𝐴 ) ⊆ ( 𝑅𝐴 ) → ( ( 𝑅𝐴 ) ⊆ 𝐴 → ( 𝑆𝐴 ) ⊆ 𝐴 ) )
3 1 2 syl ( 𝑆𝑅 → ( ( 𝑅𝐴 ) ⊆ 𝐴 → ( 𝑆𝐴 ) ⊆ 𝐴 ) )
4 df-he ( 𝑅 hereditary 𝐴 ↔ ( 𝑅𝐴 ) ⊆ 𝐴 )
5 df-he ( 𝑆 hereditary 𝐴 ↔ ( 𝑆𝐴 ) ⊆ 𝐴 )
6 3 4 5 3imtr4g ( 𝑆𝑅 → ( 𝑅 hereditary 𝐴𝑆 hereditary 𝐴 ) )