Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hhssims2.1 | โข ๐ = โจ โจ ( +โ โพ ( ๐ป ร ๐ป ) ) , ( ยทโ โพ ( โ ร ๐ป ) ) โฉ , ( normโ โพ ๐ป ) โฉ | |
hhssims2.3 | โข ๐ท = ( IndMet โ ๐ ) | ||
hhssims2.2 | โข ๐ป โ Sโ | ||
Assertion | hhssims2 | โข ๐ท = ( ( normโ โ โโ ) โพ ( ๐ป ร ๐ป ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssims2.1 | โข ๐ = โจ โจ ( +โ โพ ( ๐ป ร ๐ป ) ) , ( ยทโ โพ ( โ ร ๐ป ) ) โฉ , ( normโ โพ ๐ป ) โฉ | |
2 | hhssims2.3 | โข ๐ท = ( IndMet โ ๐ ) | |
3 | hhssims2.2 | โข ๐ป โ Sโ | |
4 | eqid | โข ( ( normโ โ โโ ) โพ ( ๐ป ร ๐ป ) ) = ( ( normโ โ โโ ) โพ ( ๐ป ร ๐ป ) ) | |
5 | 1 3 4 | hhssims | โข ( ( normโ โ โโ ) โพ ( ๐ป ร ๐ป ) ) = ( IndMet โ ๐ ) |
6 | 2 5 | eqtr4i | โข ๐ท = ( ( normโ โ โโ ) โพ ( ๐ป ร ๐ป ) ) |