Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhssims2.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| hhssims2.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | ||
| hhssims2.2 | ⊢ 𝐻 ∈ Sℋ | ||
| Assertion | hhssmet | ⊢ 𝐷 ∈ ( Met ‘ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssims2.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 2 | hhssims2.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | |
| 3 | hhssims2.2 | ⊢ 𝐻 ∈ Sℋ | |
| 4 | 1 3 | hhssnv | ⊢ 𝑊 ∈ NrmCVec |
| 5 | 1 3 | hhssba | ⊢ 𝐻 = ( BaseSet ‘ 𝑊 ) |
| 6 | 5 2 | imsmet | ⊢ ( 𝑊 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝐻 ) ) |
| 7 | 4 6 | ax-mp | ⊢ 𝐷 ∈ ( Met ‘ 𝐻 ) |