Metamath Proof Explorer


Theorem hhssmet

Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhssims2.1 W = + H × H × H norm H
hhssims2.3 D = IndMet W
hhssims2.2 H S
Assertion hhssmet D Met H

Proof

Step Hyp Ref Expression
1 hhssims2.1 W = + H × H × H norm H
2 hhssims2.3 D = IndMet W
3 hhssims2.2 H S
4 1 3 hhssnv W NrmCVec
5 1 3 hhssba H = BaseSet W
6 5 2 imsmet W NrmCVec D Met H
7 4 6 ax-mp D Met H