Metamath Proof Explorer


Theorem hhssmetdval

Description: Value of the distance function of the metric space of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhssims2.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
hhssims2.3 𝐷 = ( IndMet ‘ 𝑊 )
hhssims2.2 𝐻S
Assertion hhssmetdval ( ( 𝐴𝐻𝐵𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( norm ‘ ( 𝐴 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 hhssims2.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
2 hhssims2.3 𝐷 = ( IndMet ‘ 𝑊 )
3 hhssims2.2 𝐻S
4 1 3 hhssnv 𝑊 ∈ NrmCVec
5 1 3 hhssba 𝐻 = ( BaseSet ‘ 𝑊 )
6 1 3 hhssvs ( − ↾ ( 𝐻 × 𝐻 ) ) = ( −𝑣𝑊 )
7 1 hhssnm ( norm𝐻 ) = ( normCV𝑊 )
8 5 6 7 2 imsdval ( ( 𝑊 ∈ NrmCVec ∧ 𝐴𝐻𝐵𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm𝐻 ) ‘ ( 𝐴 ( − ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) ) )
9 4 8 mp3an1 ( ( 𝐴𝐻𝐵𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm𝐻 ) ‘ ( 𝐴 ( − ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) ) )
10 ovres ( ( 𝐴𝐻𝐵𝐻 ) → ( 𝐴 ( − ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) = ( 𝐴 𝐵 ) )
11 10 fveq2d ( ( 𝐴𝐻𝐵𝐻 ) → ( ( norm𝐻 ) ‘ ( 𝐴 ( − ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) ) = ( ( norm𝐻 ) ‘ ( 𝐴 𝐵 ) ) )
12 shsubcl ( ( 𝐻S𝐴𝐻𝐵𝐻 ) → ( 𝐴 𝐵 ) ∈ 𝐻 )
13 3 12 mp3an1 ( ( 𝐴𝐻𝐵𝐻 ) → ( 𝐴 𝐵 ) ∈ 𝐻 )
14 fvres ( ( 𝐴 𝐵 ) ∈ 𝐻 → ( ( norm𝐻 ) ‘ ( 𝐴 𝐵 ) ) = ( norm ‘ ( 𝐴 𝐵 ) ) )
15 13 14 syl ( ( 𝐴𝐻𝐵𝐻 ) → ( ( norm𝐻 ) ‘ ( 𝐴 𝐵 ) ) = ( norm ‘ ( 𝐴 𝐵 ) ) )
16 9 11 15 3eqtrd ( ( 𝐴𝐻𝐵𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( norm ‘ ( 𝐴 𝐵 ) ) )