| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhssims2.1 | ⊢ 𝑊  =  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 | 
						
							| 2 |  | hhssims2.3 | ⊢ 𝐷  =  ( IndMet ‘ 𝑊 ) | 
						
							| 3 |  | hhssims2.2 | ⊢ 𝐻  ∈   Sℋ | 
						
							| 4 | 1 3 | hhssnv | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 5 | 1 3 | hhssba | ⊢ 𝐻  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 6 | 1 3 | hhssvs | ⊢ (  −ℎ   ↾  ( 𝐻  ×  𝐻 ) )  =  (  −𝑣  ‘ 𝑊 ) | 
						
							| 7 | 1 | hhssnm | ⊢ ( normℎ  ↾  𝐻 )  =  ( normCV ‘ 𝑊 ) | 
						
							| 8 | 5 6 7 2 | imsdval | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  𝐴  ∈  𝐻  ∧  𝐵  ∈  𝐻 )  →  ( 𝐴 𝐷 𝐵 )  =  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝐴 (  −ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝐵 ) ) ) | 
						
							| 9 | 4 8 | mp3an1 | ⊢ ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  𝐻 )  →  ( 𝐴 𝐷 𝐵 )  =  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝐴 (  −ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝐵 ) ) ) | 
						
							| 10 |  | ovres | ⊢ ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  𝐻 )  →  ( 𝐴 (  −ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝐵 )  =  ( 𝐴  −ℎ  𝐵 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝐴 (  −ℎ   ↾  ( 𝐻  ×  𝐻 ) ) 𝐵 ) )  =  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝐴  −ℎ  𝐵 ) ) ) | 
						
							| 12 |  | shsubcl | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝐴  ∈  𝐻  ∧  𝐵  ∈  𝐻 )  →  ( 𝐴  −ℎ  𝐵 )  ∈  𝐻 ) | 
						
							| 13 | 3 12 | mp3an1 | ⊢ ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  𝐻 )  →  ( 𝐴  −ℎ  𝐵 )  ∈  𝐻 ) | 
						
							| 14 |  | fvres | ⊢ ( ( 𝐴  −ℎ  𝐵 )  ∈  𝐻  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝐴  −ℎ  𝐵 ) )  =  ( normℎ ‘ ( 𝐴  −ℎ  𝐵 ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  𝐻 )  →  ( ( normℎ  ↾  𝐻 ) ‘ ( 𝐴  −ℎ  𝐵 ) )  =  ( normℎ ‘ ( 𝐴  −ℎ  𝐵 ) ) ) | 
						
							| 16 | 9 11 15 | 3eqtrd | ⊢ ( ( 𝐴  ∈  𝐻  ∧  𝐵  ∈  𝐻 )  →  ( 𝐴 𝐷 𝐵 )  =  ( normℎ ‘ ( 𝐴  −ℎ  𝐵 ) ) ) |