| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hhssims2.1 |
⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 |
| 2 |
|
hhssims2.3 |
⊢ 𝐷 = ( IndMet ‘ 𝑊 ) |
| 3 |
|
hhssims2.2 |
⊢ 𝐻 ∈ Sℋ |
| 4 |
1 3
|
hhssnv |
⊢ 𝑊 ∈ NrmCVec |
| 5 |
1 3
|
hhssba |
⊢ 𝐻 = ( BaseSet ‘ 𝑊 ) |
| 6 |
1 3
|
hhssvs |
⊢ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( −𝑣 ‘ 𝑊 ) |
| 7 |
1
|
hhssnm |
⊢ ( normℎ ↾ 𝐻 ) = ( normCV ‘ 𝑊 ) |
| 8 |
5 6 7 2
|
imsdval |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) ) ) |
| 9 |
4 8
|
mp3an1 |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) ) ) |
| 10 |
|
ovres |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) = ( 𝐴 −ℎ 𝐵 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) ) = ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 12 |
|
shsubcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ) |
| 13 |
3 12
|
mp3an1 |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ) |
| 14 |
|
fvres |
⊢ ( ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 16 |
9 11 15
|
3eqtrd |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |